Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire
dc.contributor.author
Wagner, Tino
dc.contributor.author
Menges, Fabian
dc.contributor.author
Riel, Heike
dc.contributor.author
Gotsmann, Bernd
dc.contributor.author
Stemmer, Andreas
dc.date.accessioned
2018-01-11T09:53:24Z
dc.date.available
2018-01-11T09:40:50Z
dc.date.available
2018-01-11T09:53:24Z
dc.date.issued
2018-01-11
dc.identifier.issn
2190-4286
dc.identifier.other
10.3762/bjnano.9.15
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/227493
dc.identifier.doi
10.3929/ethz-b-000227493
dc.description.abstract
As electronic devices are downsized, physical processes at the interface to electrodes may dominate and limit device performance. A crucial step towards device optimization is being able to separate such contact effects from intrinsic device properties. Likewise, an increased local temperature due to Joule heating at contacts and the formation of hot spots may put limits on device integration. Therefore, being able to observe profiles of both electronic and thermal device properties at the nanoscale is important. Here, we show measurements by scanning thermal and Kelvin probe force microscopy of the same 60 nm diameter indium arsenide nanowire in operation. The observed temperature along the wire is substantially elevated near the contacts and deviates from the bellshaped temperature profile one would expect from homogeneous heating. Voltage profiles acquired by Kelvin probe force microscopy not only allow us to determine the electrical nanowire conductivity, but also to identify and quantify sizable and non-linear contact resistances at the buried nanowire–electrode interfaces. Complementing these data with thermal measurements, we obtain a device model further permitting separate extraction of the local thermal nanowire and interface conductivities.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
Beilstein Institut
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
contact resistance
en_US
dc.subject
Kelvin probe force microscopy (KFM)
en_US
dc.subject
nanowire
en_US
dc.subject
scanning thermal microscopy (SThM)
en_US
dc.subject
self-heating
en_US
dc.title
Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Beilstein Journal of Nanotechnology
ethz.journal.volume
9
en_US
ethz.journal.abbreviated
Beilstein j. nanotechnol.
ethz.pages.start
129
en_US
ethz.pages.end
136
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Heidelberg
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::03444 - Stemmer, Andreas (emeritus) / Stemmer, Andreas (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::03444 - Stemmer, Andreas (emeritus) / Stemmer, Andreas (emeritus)
en_US
ethz.date.deposited
2018-01-11T09:40:51Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-02-01T10:54:18Z
ethz.rosetta.lastUpdated
2021-02-14T21:44:34Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Combined%20scanning%20probe%20electronic%20and%20thermal%20characterization%20of%20an%20indium%20arsenide%20nanowire&rft.jtitle=Beilstein%20Journal%20of%20Nanotechnology&rft.date=2018-01-11&rft.volume=9&rft.spage=129&rft.epage=136&rft.issn=2190-4286&rft.au=Wagner,%20Tino&Menges,%20Fabian&Riel,%20Heike&Gotsmann,%20Bernd&Stemmer,%20Andreas&rft.genre=article&rft_id=info:doi/10.3762/bjnano.9.15&
Files in this item
Publication type
-
Journal Article [131991]