Improving destination choice modeling using location-based big data
dc.contributor.author
Molloy, Joseph
dc.contributor.author
Moeckel, Rolf
dc.date.accessioned
2019-01-30T14:59:50Z
dc.date.available
2017-09-20T13:19:04Z
dc.date.available
2017-09-20T14:05:33Z
dc.date.available
2019-01-30T14:59:50Z
dc.date.issued
2017-09-20
dc.identifier.issn
2220-9964
dc.identifier.other
10.3390/ijgi6090291
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/186191
dc.identifier.doi
10.3929/ethz-b-000186191
dc.description.abstract
Citizens are increasingly sharing their location and movements through “check-ins” on location based social networks (LBSNs). These services are collecting unprecedented amounts of big data that can be used to study how we travel and interact with our environment. This paper presents the development of a long distance destination choice model for Ontario, Canada, using data from Foursquare to model destination attractiveness. A methodology to collect and process historical check-in counts has been developed, allowing the utility of each destination to be calculated based on the intensity of different activities performed at the destination. Destinations such as national parks and ski areas are very strong attractors of leisure trips, yet do not employ many people and have few residents. Trip counts to such destinations are therefore poorly predicted by models based on population and employment. Traditionally, this has been remedied by extensive manual data collection. The integration of Foursquare data offers an alternative approach to this problem. The Foursquare based destination choice model was evaluated against a traditional model estimated only with population and employment. The results demonstrate that data from LBSNs can be used to improve destination choice models, particularly for leisure travel.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Destination choice
en_US
dc.subject
Multinominal logit
en_US
dc.subject
MNL
en_US
dc.subject
Foursquare
en_US
dc.subject
Big data
en_US
dc.subject
Location based social networks
en_US
dc.title
Improving destination choice modeling using location-based big data
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
ISPRS International Journal of Geo-Information
ethz.journal.volume
6
en_US
ethz.journal.issue
9
en_US
ethz.journal.abbreviated
ISPRS int. j. geo-inf.
ethz.pages.start
291
en_US
ethz.size
15 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Big data transport models: The example of road pricing
en_US
ethz.identifier.wos
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::03521 - Axhausen, Kay W. (emeritus) / Axhausen, Kay W. (emeritus)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt und Landschaft D-ARCH::02226 - NSL - Netzwerk Stadt und Landschaft / NSL - Network City and Landscape
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::03521 - Axhausen, Kay W. (emeritus) / Axhausen, Kay W. (emeritus)
en_US
ethz.grant.agreementno
167189
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
NFP 75: Gesuch
ethz.relation.isNewVersionOf
10.3929/ethz-b-000130802
ethz.date.deposited
2017-09-20T13:19:05Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-09-20T14:05:50Z
ethz.rosetta.lastUpdated
2024-02-02T07:04:54Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Improving%20destination%20choice%20modeling%20using%20location-based%20big%20data&rft.jtitle=ISPRS%20International%20Journal%20of%20Geo-Information&rft.date=2017-09-20&rft.volume=6&rft.issue=9&rft.spage=291&rft.issn=2220-9964&rft.au=Molloy,%20Joseph&Moeckel,%20Rolf&rft.genre=article&rft_id=info:doi/10.3390/ijgi6090291&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [131699]