Implicit-Zoo: A Large-Scale Dataset of Neural Implicit Functions for 2D Images and 3D Scenes
dc.contributor.author
Ma, Qi
dc.contributor.author
Paudel, Danda Pani
dc.contributor.author
Konukoglu, Ender
dc.contributor.author
Van Gool, Luc
dc.date.accessioned
2024-12-04T08:24:25Z
dc.date.available
2024-12-03T13:10:42Z
dc.date.available
2024-12-04T08:22:53Z
dc.date.available
2024-12-04T08:24:25Z
dc.date.issued
2024
dc.identifier.uri
http://hdl.handle.net/20.500.11850/708963
dc.identifier.doi
10.3929/ethz-b-000708963
dc.description.abstract
Neural implicit functions have demonstrated significant importance in various areas such as computer vision, graphics. Their advantages include the ability to represent complex shapes and scenes with high fidelity, smooth interpolation capabilities, and continuous representations. Despite these benefits, the development and analysis of implicit functions have been limited by the lack of comprehensive datasets and the substantial computational resources required for their implementation and evaluation. To address these challenges, we introduce "Implicit-Zoo": a large-scale dataset requiring thousands of GPU training days designed to facilitate research and development in this field. Our dataset includes diverse 2D and 3D scenes, such as CIFAR-10, ImageNet-1K, and Cityscapes for 2D image tasks, and the OmniObject3D dataset for 3D vision tasks. We ensure high quality through strict checks, refining or filtering out low-quality data. Using Implicit-Zoo, we showcase two immediate benefits as it enables to: (1) learn token locations for transformer models; (2) Directly regress 3D cameras poses of 2D images with respect to NeRF models. This in turn leads to an \emph{improved performance} in all three task of image classification, semantic segmentation, and 3D pose regression -- thereby unlocking new avenues for research.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.title
Implicit-Zoo: A Large-Scale Dataset of Neural Implicit Functions for 2D Images and 3D Scenes
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
ethz.size
21 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024)
en_US
ethz.event.location
Vancouver, Canada
en_US
ethz.event.date
December 10-15, 2024
en_US
ethz.notes
Poster presentation on December 12, 2024
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09579 - Konukoglu, Ender / Konukoglu, Ender
en_US
ethz.identifier.url
https://neurips.cc/virtual/2024/poster/97616
ethz.relation.isNewVersionOf
https://doi.org/10.48550/arXiv.2406.17438
ethz.relation.isNewVersionOf
https://openreview.net/forum?id=b57BKV8qKQ
ethz.date.deposited
2024-12-03T13:10:43Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.exportRequired
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Implicit-Zoo:%20A%20Large-Scale%20Dataset%20of%20Neural%20Implicit%20Functions%20for%202D%20Images%20and%203D%20Scenes&rft.date=2024&rft.au=Ma,%20Qi&Paudel,%20Danda%20Pani&Konukoglu,%20Ender&Van%20Gool,%20Luc&rft.genre=proceeding&rft.btitle=Implicit-Zoo:%20A%20Large-Scale%20Dataset%20of%20Neural%20Implicit%20Functions%20for%202D%20Images%20and%203D%20Scenes
Files in this item
Publication type
-
Conference Paper [35822]