Acoustically Actuated Soft Robots for Biomedical Applications
dc.contributor.author
Zhang, Zhiyuan
dc.contributor.supervisor
Ahmed, Daniel
dc.contributor.supervisor
Nama, Nitesh
dc.contributor.supervisor
Pané i Vidal, Salvador
dc.date.accessioned
2024-11-25T12:33:45Z
dc.date.available
2024-11-24T00:41:05Z
dc.date.available
2024-11-24T00:47:55Z
dc.date.available
2024-11-25T12:24:47Z
dc.date.available
2024-11-25T12:33:45Z
dc.date.issued
2024
dc.identifier.uri
http://hdl.handle.net/20.500.11850/706721
dc.identifier.doi
10.3929/ethz-b-000706721
dc.description.abstract
Micro/nano robots and soft robots represent not only crucial areas of research but also pivotal technologies in advancing human healthcare. The utilization of external stimuli and fields, including chemical reactions, light, heat, humidity, electric fields, and magnetic fields, provides a viable option for the design and implementation of soft microrobots. Remarkably, acoustically actuated microrobots developed in the past decade have demonstrated diverse functionalities and maneuvering abilities. Because acoustic technologies are capable of generating large forces, simplifying robotic design, facilitating rapid prototyping, enabling remote and wireless operation, offering versatile programmability and multiscale scalability, and providing ultrafast reversible responses within milliseconds. However, acoustically actuated soft robots, representing a new conceptual research, have been largely unexplored, despite their potential to achieve groundbreaking advancements in robotics, wearable technology, flexible electronics, healthcare, and more. In this dissertation, we review recent strides and investigate new design strategies, potential applications, and future challenges for acoustically actuated soft robots. We start with an extensive literature review on the progress of acoustic actuating techniques, summarizing their advantages, limitations, and application scenarios. In the following, we highlight the latest advances in acoustic robots and analyze the fundamental design principles and physical effects that govern their operation. We then propose and demonstrate new actuation concepts, design paradigms, fabrication methods, modeling theories, and applications for acoustically actuated soft robots across various scales. Chapter 2 introduces the concept of acoustic virtual walls, allowing microparticle swarms to roll along reprogrammable virtual paths in liquids using combined magnetic and acoustic fields, circumventing the need for physical boundaries. Chapter 3 discusses the 'SonoTransformer,' an acoustically activated micromachine that uses preprogrammed soft hinges of varying stiffnesses for selective shape transformation, enhancing control and versatility in design and function. Finally, Chapter 4 presents the development of artificial muscles that utilize over 10,000 resonant microbubbles activated by targeted ultrasound to achieve programmable deformations and dynamic movements, highlighting their potential for underwater robotic design and applications. Our research presents promising opportunities across multiple scientific domains, including robotics, acoustics, fluidics, engineering, biomedicine, and more. Finally, we summarize the significant achievements and key contributions of our research and present prospects for the development of acoustic soft robots.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Robotics
en_US
dc.subject
Soft robotics
en_US
dc.subject
Micro/nanorobotics
en_US
dc.subject
Acoustics
en_US
dc.subject
Acoustofluidics
en_US
dc.title
Acoustically Actuated Soft Robots for Biomedical Applications
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
209 p.
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::600 - Technology (applied sciences)
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::620 - Engineering & allied operations
en_US
ethz.code.ddc
DDC - DDC::5 - Science::530 - Physics
en_US
ethz.identifier.diss
30546
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09700 - Ahmed, Daniel / Ahmed, Daniel
en_US
ethz.relation.cites
10.1016/B978-0-323-95213-2.00007-7
ethz.relation.cites
10.3929/ethz-b-000586197
ethz.relation.cites
10.3929/ethz-b-000659406
ethz.relation.cites
10.1101/2024.01.08.574699
ethz.date.deposited
2024-11-24T00:41:05Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-11-25T12:24:49Z
ethz.rosetta.lastUpdated
2024-11-25T12:24:49Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Acoustically%20Actuated%20Soft%20Robots%20for%20Biomedical%20Applications&rft.date=2024&rft.au=Zhang,%20Zhiyuan&rft.genre=unknown&rft.btitle=Acoustically%20Actuated%20Soft%20Robots%20for%20Biomedical%20Applications
Dateien zu diesem Eintrag
Publikationstyp
-
Doctoral Thesis [30309]