Notice
This record is in review state, the data has not yet been validated.
Data- and physics-driven deep learning for forward and inverse problems in computational mechanics
dc.contributor.author
Bastek, Jan-Hendrik
dc.date.accessioned
2024-11-22T12:44:29Z
dc.date.available
2024-11-22T12:44:29Z
dc.date.issued
2024
dc.identifier.uri
http://hdl.handle.net/20.500.11850/706657
dc.title
Data- and physics-driven deep learning for forward and inverse problems in computational mechanics
en_US
dc.type
Doctoral Thesis
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::620 - Engineering & allied operations
en_US
ethz.identifier.diss
30773
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::09600 - Kochmann, Dennis / Kochmann, Dennis
en_US
ethz.date.deposited
2024-11-22T12:44:30Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.doipreview
Yes
en_US
ethz.rosetta.exportRequired
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Data-%20and%20physics-driven%20deep%20learning%20for%20forward%20and%20inverse%20problems%20in%20computational%20mechanics&rft.date=2024&rft.au=Bastek,%20Jan-Hendrik&rft.genre=unknown&rft.btitle=Data-%20and%20physics-driven%20deep%20learning%20for%20forward%20and%20inverse%20problems%20in%20computational%20mechanics
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Doctoral Thesis [30333]