On Deterministically Approximating Total Variation Distance
dc.contributor.author
Feng, Weiming
dc.contributor.author
Liu, Liqiang
dc.contributor.author
Liu, Tianren
dc.contributor.editor
Woodruff, David P.
dc.date.accessioned
2024-10-08T08:18:58Z
dc.date.available
2024-09-04T07:50:38Z
dc.date.available
2024-10-03T14:00:57Z
dc.date.available
2024-10-08T08:18:58Z
dc.date.issued
2024
dc.identifier.isbn
978-1-61197-791-2
en_US
dc.identifier.other
10.1137/1.9781611977912.70
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/692160
dc.description.abstract
Total variation distance (TV distance) is an important measure for the difference between two distributions. Recently, there has been progress in approximating the TV distance between product distributions: a deterministic algorithm for a restricted class of product distributions (Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan and Vinodchandran 2023) and a randomized algorithm for general product distributions (Feng, Guo, Jerrum and Wang 2023). We give a deterministic fully polynomial-time approximation algorithm (FPTAS) for the TV distance between product distributions. Given two product distributions P and Q over [q](n), our algorithm approximates their TV distance with relative error epsilon in time O (qn(2)/epsilon log q log n/epsilon Delta(TV)(P,Q)).
en_US
dc.description.abstract
Our algorithm is built around two key concepts: 1) The likelihood ratio as a distribution, which captures sufficient information to compute the TV distance. 2) We introduce a metric between likelihood ratio distributions, called the minimum total variation distance. Our algorithm computes a sparsified likelihood ratio distribution that is close to the original one w.r.t. the new metric. The approximated TV distance can be computed from the sparsified likelihood ratio.
en_US
dc.description.abstract
Our technique also implies deterministic FPTAS for the TV distance between Markov chains.
en_US
dc.language.iso
en
en_US
dc.publisher
SIAM
en_US
dc.title
On Deterministically Approximating Total Variation Distance
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
en_US
ethz.pages.start
1766
en_US
ethz.pages.end
1791
en_US
ethz.event
35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2024)
en_US
ethz.event.location
Alexandria, VA, USA
en_US
ethz.event.date
January 7-10, 2024
en_US
ethz.identifier.wos
ethz.publication.place
Philadelphia, PA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::02889 - ETH Institut für Theoretische Studien / ETH Institute for Theoretical Studies
en_US
ethz.date.deposited
2024-09-04T07:50:46Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-10-03T14:00:59Z
ethz.rosetta.lastUpdated
2024-10-03T14:00:59Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20Deterministically%20Approximating%20Total%20Variation%20Distance&rft.date=2024&rft.spage=1766&rft.epage=1791&rft.au=Feng,%20Weiming&Liu,%20Liqiang&Liu,%20Tianren&rft.isbn=978-1-61197-791-2&rft.genre=proceeding&rft_id=info:doi/10.1137/1.9781611977912.70&rft.btitle=Proceedings%20of%20the%202024%20Annual%20ACM-SIAM%20Symposium%20on%20Discrete%20Algorithms%20(SODA)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35571]