Abstract
We present Neural Fields for LiDAR (NFL), a method to optimise a neural field scene representation from LiDAR measurements, with the goal of synthesizing realistic LiDAR scans from novel viewpoints. NFL combines the rendering power of neural fields with a detailed, physically motivated model of the LiDAR sensing process, thus enabling it to accurately reproduce key sensor behaviors like beam divergence, secondary returns, and ray dropping. We evaluate NFL on synthetic and real LiDAR scans and show that it outperforms explicit reconstruct-then-simulate methods as well as other NeRF-style methods on LiDAR novel view synthesis task. Moreover, we show that the improved realism of the synthesized views narrows the domain gap to real scans and translates to better registration and semantic segmentation performance. Show more
Publication status
publishedExternal links
Book title
2023 IEEE/CVF International Conference on Computer Vision (ICCV)Pages / Article No.
Publisher
IEEEEvent
Notes
Conference lecture held on October 6, 2023.More
Show all metadata
ETH Bibliography
yes
Altmetrics