Metadata only
Autor(in)
Alle anzeigen
Datum
2024-07Typ
- Conference Paper
ETH Bibliographie
yes
Altmetrics
Abstract
With the widespread digitization of finance and the increasing popularity of cryptocurrencies, the sophistication of fraud schemes devised by cybercriminals is growing. Money laundering -- the movement of illicit funds to conceal their origins -- can cross bank and national boundaries, producing complex transaction patterns. The UN estimates 2-5\% of global GDP or $0.8 - $2.0 trillion dollars are laundered globally each year. Unfortunately, real data to train machine learning models to detect laundering is generally not available, and previous synthetic data generators have had significant shortcomings. A realistic, standardized, publicly-available benchmark is needed for comparing models and for the advancement of the area.To this end, this paper contributes a synthetic financial transaction dataset generator and a set of synthetically generated AML (Anti-Money Laundering) datasets. We have calibrated this agent-based generator to match real transactions as closely as possible and made the datasets public. We describe the generator in detail and demonstrate how the datasets generated can help compare different machine learning models in terms of their AML abilities. In a key way, using synthetic data in these comparisons can be even better than using real data: the ground truth labels are complete, whilst many laundering transactions in real data are never detected. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Herausgeber(in)
Buchtitel
Advances in Neural Information Processing Systems 36Seiten / Artikelnummer
Verlag
CurranKonferenz
Organisationseinheit
03604 - Wattenhofer, Roger / Wattenhofer, Roger
Zugehörige Publikationen und Daten
Is new version of: https://openreview.net/forum?id=XZf2bnMBag
Is new version of: https://doi.org/10.48550/ARXIV.2306.16424
Anmerkungen
Datasets and Benchmarks Track.ETH Bibliographie
yes
Altmetrics