Show simple item record

dc.contributor.author
Wang, Xin
dc.contributor.author
Kwon, Taein
dc.contributor.author
Rad, Mahdi
dc.contributor.author
Pan, Bowen
dc.contributor.author
Chakraborty, Ishani
dc.contributor.author
Andrist, Sean
dc.contributor.author
Bohus, Dan
dc.contributor.author
Feniello, Ashley
dc.contributor.author
Tekin, Bugra
dc.contributor.author
Vieira Frujeri, Felipe
dc.contributor.author
Joshi, Neel
dc.contributor.author
Pollefeys, Marc
dc.date.accessioned
2024-07-03T07:05:45Z
dc.date.available
2023-11-23T16:31:20Z
dc.date.available
2023-11-30T06:58:42Z
dc.date.available
2024-07-03T07:05:45Z
dc.date.issued
2023
dc.identifier.isbn
979-8-3503-0718-4
en_US
dc.identifier.isbn
979-8-3503-0719-1
en_US
dc.identifier.other
10.1109/ICCV51070.2023.01854
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/643502
dc.description.abstract
Building an interactive AI assistant that can perceive, reason, and collaborate with humans in the real world has been a long-standing pursuit in the AI community. This work is part of a broader research effort to develop intelligent agents that can interactively guide humans through performing tasks in the physical world. As a first step in this direction, we introduce HoloAssist, a large-scale egocentric human interaction dataset, where two people collaboratively complete physical manipulation tasks. The task performer executes the task while wearing a mixed-reality headset that captures seven synchronized data streams. The task instructor watches the performer's egocentric video in real time and guides them verbally. By augmenting the data with action and conversational annotations and observing the rich behaviors of various participants, we present key insights into how human assistants correct mistakes, intervene in the task completion procedure, and ground their instructions to the environment. HoloAssist spans 166 hours of data captured by 350 unique instructor-performer pairs. Furthermore, we construct and present benchmarks on mistake detection, intervention type prediction, and hand forecasting, along with detailed analysis. We expect HoloAssist will provide an important resource for building AI assistants that can fluidly collaborate with humans in the real world. Data can be downloaded at https://holoassist.github.io/.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
HoloAssist: an Egocentric Human Interaction Dataset for Interactive AI Assistants in the Real World
en_US
dc.type
Conference Paper
dc.date.published
2024-01-15
ethz.book.title
2023 IEEE/CVF International Conference on Computer Vision (ICCV)
en_US
ethz.pages.start
20213
en_US
ethz.pages.end
20224
en_US
ethz.event
19th IEEE/CVF International Conference on Computer Vision (ICCV 2023)
ethz.event.location
Paris, France
en_US
ethz.event.date
October 2-6, 2023
en_US
ethz.notes
Conference lecture held on October 6, 2023.
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03766 - Pollefeys, Marc / Pollefeys, Marc
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03766 - Pollefeys, Marc / Pollefeys, Marc
en_US
ethz.relation.cites
10.3929/ethz-b-000683960
ethz.relation.isNewVersionOf
https://openaccess.thecvf.com/content/ICCV2023/html/Wang_HoloAssist_an_Egocentric_Human_Interaction_Dataset_for_Interactive_AI_Assistants_ICCV_2023_paper.html
ethz.date.deposited
2023-11-23T16:31:20Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-07-03T07:05:48Z
ethz.rosetta.lastUpdated
2024-07-03T07:05:48Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=HoloAssist:%20an%20Egocentric%20Human%20Interaction%20Dataset%20for%20Interactive%20AI%20Assistants%20in%20the%20Real%20World&rft.date=2023&rft.spage=20213&rft.epage=20224&rft.au=Wang,%20Xin&Kwon,%20Taein&Rad,%20Mahdi&Pan,%20Bowen&Chakraborty,%20Ishani&rft.isbn=979-8-3503-0718-4&979-8-3503-0719-1&rft.genre=proceeding&rft_id=info:doi/10.1109/ICCV51070.2023.01854&rft.btitle=2023%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record