Hexatagging: Projective Dependency Parsing as Tagging
dc.contributor.author
Amini, Afra
dc.contributor.author
Liu, Tianyu
dc.contributor.author
Cotterell, Ryan
dc.contributor.editor
Rogers, Anna
dc.contributor.editor
Boyd-Graber, Jordan
dc.contributor.editor
Okazaki, Naoaki
dc.date.accessioned
2024-04-30T14:14:30Z
dc.date.available
2023-10-19T11:15:10Z
dc.date.available
2023-10-19T11:31:23Z
dc.date.available
2023-10-23T09:19:10Z
dc.date.available
2024-04-30T14:14:30Z
dc.date.issued
2023-07
dc.identifier.isbn
978-1-959429-71-5
en_US
dc.identifier.other
10.18653/v1/2023.acl-short.124
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/637527
dc.identifier.doi
10.3929/ethz-b-000637527
dc.description.abstract
We introduce a novel dependency parser, the hexatagger, that constructs dependency trees by tagging the words in a sentence with elements from a finite set of possible tags. In contrast to many approaches to dependency parsing, our approach is fully parallelizable at training time, i.e., the structure-building actions needed to build a dependency parse can be predicted in parallel to each other. Additionally, exact decoding is linear in time and space complexity. Furthermore, we derive a probabilistic dependency parser that predicts hexatags using no more than a linear model with features from a pretrained language model, i.e., we forsake a bespoke architecture explicitly designed for the task. Despite the generality and simplicity of our approach, we achieve state-of-the-art performance of 96.4 LAS and 97.4 UAS on the Penn Treebank test set. Additionally, our parser’s linear time complexity and parallelism significantly improve computational efficiency, with a roughly 10-times speed-up over previous state-of-the-art models during decoding.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Association for Computational Linguistics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Hexatagging: Projective Dependency Parsing as Tagging
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.book.title
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Volume 2: Short Papers
en_US
ethz.pages.start
1453
en_US
ethz.pages.end
1464
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
61st Annual Meeting of the Association for Computational Linguistics (ACL 2023)
en_US
ethz.event.location
Toronto, Canada
en_US
ethz.event.date
July 9-14, 2023
en_US
ethz.identifier.wos
ethz.publication.place
Stroudsburg, PA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02219 - ETH AI Center / ETH AI Center
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09682 - Cotterell, Ryan / Cotterell, Ryan
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09682 - Cotterell, Ryan / Cotterell, Ryan
ethz.date.deposited
2023-10-19T11:15:11Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-10-19T11:31:24Z
ethz.rosetta.lastUpdated
2024-02-03T05:28:57Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Hexatagging:%20Projective%20Dependency%20Parsing%20as%20Tagging&rft.date=2023-07&rft.spage=1453&rft.epage=1464&rft.au=Amini,%20Afra&Liu,%20Tianyu&Cotterell,%20Ryan&rft.isbn=978-1-959429-71-5&rft.genre=proceeding&rft_id=info:doi/10.18653/v1/2023.acl-short.124&rft.btitle=Proceedings%20of%20the%2061st%20Annual%20Meeting%20of%20the%20Association%20for%20Computational%20Linguistics,%20Volume%202:%20Short%20Papers
Files in this item
Publication type
-
Conference Paper [35603]