In-Ear-Voice: Towards Milli-Watt Audio Enhancement With Bone-Conduction Microphones for In-Ear Sensing Platforms
Open access
Date
2023-05-09Type
- Conference Paper
Abstract
The recent ubiquitous adoption of remote conferencing has been accompanied by omnipresent frustration with distorted or otherwise unclear voice communication. Audio enhancement can compensate for low-quality input signals from, for example, small true wireless earbuds, by applying noise suppression techniques. Such processing relies on voice activity detection (VAD) with low latency and the added capability of discriminating the wearer's voice from others - a task of significant computational complexity. The tight energy budget of devices as small as modern earphones, however, requires any system attempting to tackle this problem to do so with minimal power and processing overhead, while not relying on speaker-specific voice samples and training due to usability concerns. This paper presents the design and implementation of a custom research platform for low-power wireless earbuds based on novel, commercial, MEMS bone-conduction microphones. Such microphones can record the wearer's speech with much greater isolation, enabling personalized voice activity detection and further audio enhancement applications. Furthermore, the paper accurately evaluates a proposed low-power personalized speech detection algorithm based on bone conduction data and a recurrent neural network running on the implemented research platform. This algorithm is compared to an approach based on traditional microphone input. The performance of the bone conduction system, achieving detection of speech within 12.8ms at an accuracy of 95% is evaluated. Different SoC choices are contrasted, with the final implementation based on the cutting-edge Ambiq Apollo 4 Blue SoC achieving 2.64mW average power consumption at 14uJ per inference, reaching 43h of battery life on a miniature 32mAh li-ion cell and without duty cycling. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000614017Publication status
publishedExternal links
Book title
IoTDI '23: Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and ImplementationPages / Article No.
Publisher
Association for Computing MachineryEvent
Subject
bone conduction; voice activity detection; TinyML; DSPOrganisational unit
01225 - D-ITET Zentr. f. projektbasiertes Lernen / D-ITET Center for Project-Based Learning
Related publications and datasets
Is variant form of: http://hdl.handle.net/20.500.11850/614021
Is original form of: http://hdl.handle.net/20.500.11850/614021
More
Show all metadata