Voxfield: Non-Projective Signed Distance Fields for Online Planning and 3D Reconstruction
dc.contributor.author
Pan, Yue
dc.contributor.author
Kompis, Yves
dc.contributor.author
Bartolomei, Luca
dc.contributor.author
Mascaro, Ruben
dc.contributor.author
Stachniss, Cyrill
dc.contributor.author
Chli, Margarita
dc.date.accessioned
2023-03-31T10:22:04Z
dc.date.available
2023-03-31T10:20:01Z
dc.date.available
2023-03-31T10:22:04Z
dc.date.issued
2022
dc.identifier.isbn
978-1-6654-7927-1
en_US
dc.identifier.isbn
978-1-6654-7928-8
en_US
dc.identifier.issn
2153-0858
dc.identifier.other
10.1109/IROS47612.2022.9981318
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/605997
dc.identifier.doi
10.3929/ethz-b-000560719
dc.description.abstract
Creating accurate maps of complex, unknown environments is of utmost importance for truly autonomous navigation robot. However, building these maps online is far from trivial, especially when dealing with large amounts of raw sensor readings on a computation and energy constrained mobile system, such as a small drone. While numerous approaches tackling this problem have emerged in recent years, the mapping accuracy is often sacrificed as systematic approximation errors are tolerated for efficiency’s sake. Motivated by these challenges, we propose Voxfield, a mapping framework that can generate maps online with higher accuracy and lower computational burden than the state of the art. Built upon the novel formulation of non-projective truncated signed distance fields (TSDFs), our approach produces more accurate and complete maps, suitable for surface reconstruction. Additionally, it enables efficient generation of Euclidean signed distance fields (ESDFs), useful e.g., for path planning, that does not suffer from typical approximation errors. Through a series of experiments with public datasets, both real-world and synthetic, we demonstrate that our method beats the state of the art in map coverage, accuracy and computational time. Moreover, we show that Voxfield can be utilized as a back-end in recent multi-resolution mapping frameworks, producing high quality maps even in large-scale experiments. Finally, we validate our method by running it onboard a quadrotor, showing it can generate accurate ESDF maps usable for real-time path planning and obstacle avoidance.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Robotics
en_US
dc.subject
Mapping
en_US
dc.title
Voxfield: Non-Projective Signed Distance Fields for Online Planning and 3D Reconstruction
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2022-12-26
ethz.book.title
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
en_US
ethz.pages.start
5331
en_US
ethz.pages.end
5338
en_US
ethz.size
8 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
35th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022)
en_US
ethz.event.location
Kyoto, Japan
en_US
ethz.event.date
October 23-27, 2022
en_US
ethz.grant
Collaborative Vision-based Perception, Towards Intellingent Robotic Teams
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09559 - Chli, Margarita (ehemalig) / Chli, Margarita (former)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09559 - Chli, Margarita (ehemalig) / Chli, Margarita (former)
en_US
ethz.grant.agreementno
183720
ethz.grant.agreementno
183720
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
SNF-Förderungsprofessuren: Fortsetzungsgesuche
ethz.grant.program
SNF-Förderungsprofessuren: Fortsetzungsgesuche
ethz.date.deposited
2022-07-28T13:57:52Z
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-03-31T10:20:03Z
ethz.rosetta.lastUpdated
2024-02-02T21:27:18Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/560719
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/603864
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Voxfield:%20Non-Projective%20Signed%20Distance%20Fields%20for%20Online%20Planning%20and%203D%20Reconstruction&rft.date=2022&rft.spage=5331&rft.epage=5338&rft.issn=2153-0858&rft.au=Pan,%20Yue&Kompis,%20Yves&Bartolomei,%20Luca&Mascaro,%20Ruben&Stachniss,%20Cyrill&rft.isbn=978-1-6654-7927-1&978-1-6654-7928-8&rft.genre=proceeding&rft_id=info:doi/10.1109/IROS47612.2022.9981318&rft.btitle=2022%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)
Files in this item
Publication type
-
Conference Paper [35515]