Show simple item record

dc.contributor.author
Marcinkevičs, Ričards
dc.contributor.author
Reis Wolfertstetter, Patricia
dc.contributor.author
Klimiene, Ugne
dc.contributor.author
Özkan Elsen, Ece
dc.contributor.author
Chin-Cheong, Kieran
dc.contributor.author
Paschke, Alyssia
dc.contributor.author
Zerres, Julia
dc.contributor.author
Denzinger, Markus
dc.contributor.author
Niederberger, David
dc.contributor.author
Wellmann, Sven
dc.contributor.author
Knorr, Christian
dc.contributor.author
Vogt, Julia E.
dc.date.accessioned
2023-03-01T13:00:44Z
dc.date.available
2023-03-01T12:43:44Z
dc.date.available
2023-03-01T13:00:44Z
dc.date.issued
2023-02-28
dc.identifier.other
10.48550/arXiv.2302.14460
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/601130
dc.identifier.doi
10.3929/ethz-b-000601130
dc.description.abstract
Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. With recent advances in machine learning, data-driven decision support could help clinicians diagnose and manage patients while reducing the number of non-critical surgeries. Previous decision support systems for appendicitis focused on clinical, laboratory, scoring and computed tomography data, mainly ignoring abdominal ultrasound, a noninvasive and readily available diagnostic modality. To this end, we developed and validated interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Our methodological contribution is the generalization of concept bottleneck models to prediction problems with multiple views and incomplete concept sets. Notably, such models lend themselves to interpretation and interaction via high-level concepts understandable to clinicians without sacrificing performance or requiring time-consuming image annotation when deployed.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cornell University
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject
Appendicitis
en_US
dc.subject
Pediatrics
en_US
dc.subject
Ultrasound
en_US
dc.subject
Machine Learning
en_US
dc.subject
Classification
en_US
dc.subject
Interpretability
en_US
dc.subject
Concepts
en_US
dc.subject
Multiview Learning
en_US
dc.title
Interpretable and Intervenable Ultrasonography-based Machine Learning Models for Pediatric Appendicitis
en_US
dc.type
Working Paper
dc.rights.license
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
ethz.journal.title
arXiv
ethz.pages.start
2302.14460
en_US
ethz.size
41 p.
en_US
ethz.identifier.arxiv
2302.14460
ethz.publication.place
Ithaca, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09670 - Vogt, Julia / Vogt, Julia
en_US
ethz.relation.cites
10.3929/ethz-b-000481289
ethz.relation.cites
20.500.11850/520311
ethz.relation.isPreviousVersionOf
handle/20.500.11850/621635
ethz.relation.isPreviousVersionOf
10.3929/ethz-b-000643550
ethz.date.deposited
2023-03-01T12:43:44Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.version
v1
ethz.rosetta.installDate
2023-03-01T13:00:48Z
ethz.rosetta.lastUpdated
2024-02-02T20:41:14Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Interpretable%20and%20Intervenable%20Ultrasonography-based%20Machine%20Learning%20Models%20for%20Pediatric%20Appendicitis&rft.jtitle=arXiv&rft.date=2023-02-28&rft.spage=2302.14460&rft.au=Marcinkevi%C4%8Ds,%20Ri%C4%8Dards&Reis%20Wolfertstetter,%20Patricia&Klimiene,%20Ugne&%C3%96zkan%20Elsen,%20Ece&Chin-Cheong,%20Kieran&rft.genre=preprint&rft_id=info:doi/10.48550/arXiv.2302.14460&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record