Show simple item record

dc.contributor.author
Wang, Daoye
dc.contributor.author
Chandran, Prashanth
dc.contributor.author
Zoss, Gaspard
dc.contributor.author
Bradley, Derek
dc.contributor.author
Gotardo, Paulo
dc.contributor.editor
Nandigjav, Munkhtsetseg
dc.contributor.editor
Mitra, Niloy J.
dc.contributor.editor
Hertzmann, Aaron
dc.date.accessioned
2023-03-24T09:33:58Z
dc.date.available
2023-01-27T06:51:02Z
dc.date.available
2023-03-24T09:33:58Z
dc.date.issued
2022-07
dc.identifier.isbn
978-1-4503-9337-9
en_US
dc.identifier.other
10.1145/3528233.3530753
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/595238
dc.description.abstract
Recent research work has developed powerful generative models (e.g., StyleGAN2) that can synthesize complete human head images with impressive photorealism, enabling applications such as photorealistically editing real photographs. While these models can be trained on large collections of unposed images, their lack of explicit 3D knowledge makes it difficult to achieve even basic control over 3D viewpoint without unintentionally altering identity. On the other hand, recent Neural Radiance Field (NeRF) methods have already achieved multiview-consistent, photorealistic renderings but they are so far limited to a single facial identity. In this paper, we propose a new Morphable Radiance Field (MoRF) method that extends a NeRF into a generative neural model that can realistically synthesize multiview-consistent images of complete human heads, with variable and controllable identity. MoRF allows for morphing between particular identities, synthesizing arbitrary new identities, or quickly generating a NeRF from few images of a new subject, all while providing realistic and consistent rendering under novel viewpoints. We train MoRF in a supervised fashion by leveraging a high-quality database of multiview portrait images of several people, captured in studio with polarization-based separation of diffuse and specular reflection. Here, we demonstrate how MoRF is a strong new step forwards towards generative NeRFs for 3D neural head modeling.
en_US
dc.language.iso
en
en_US
dc.publisher
Association for Computing Machinery
en_US
dc.subject
neural rendering
en_US
dc.subject
novel view synthesis
en_US
dc.subject
photoreal human synthesis
en_US
dc.subject
generative models
en_US
dc.subject
neural radiance fields
en_US
dc.title
MoRF: Morphable Radiance Fields for Multiview Neural Head Modeling
en_US
dc.type
Conference Paper
dc.date.published
2022-07-24
ethz.book.title
SIGGRAPH '22: ACM SIGGRAPH 2022 Conference Proceedings
en_US
ethz.pages.start
55
en_US
ethz.size
9 p.
en_US
ethz.event
Special Interest Group on Computer Graphics and Interactive Techniques Conference (SIGGRAPH 2022)
en_US
ethz.event.location
Vancouver, Canada
en_US
ethz.event.date
August 7-11, 2022
en_US
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03420 - Gross, Markus / Gross, Markus
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03420 - Gross, Markus / Gross, Markus
en_US
ethz.date.deposited
2023-01-27T06:51:02Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2023-03-24T09:34:00Z
ethz.rosetta.lastUpdated
2023-03-24T09:34:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=MoRF:%20Morphable%20Radiance%20Fields%20for%20Multiview%20Neural%20Head%20Modeling&rft.date=2022-07&rft.spage=55&rft.au=Wang,%20Daoye&Chandran,%20Prashanth&Zoss,%20Gaspard&Bradley,%20Derek&Gotardo,%20Paulo&rft.isbn=978-1-4503-9337-9&rft.genre=proceeding&rft_id=info:doi/10.1145/3528233.3530753&rft.btitle=SIGGRAPH%20'22:%20ACM%20SIGGRAPH%202022%20Conference%20Proceedings
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record