Show simple item record

dc.contributor.author
Bunne, Charlotte
dc.contributor.author
Krause, Andreas
dc.contributor.author
Cuturi, Marco
dc.contributor.editor
Koyejo, Sanmi
dc.contributor.editor
Mohamed, Shakir
dc.contributor.editor
Agarwal, Alekh
dc.contributor.editor
Belgrave, Danielle
dc.contributor.editor
Cho, Kyunghyun
dc.contributor.editor
Oh, Alice
dc.date.accessioned
2023-04-05T07:28:56Z
dc.date.available
2023-01-17T10:50:24Z
dc.date.available
2023-03-08T08:56:19Z
dc.date.available
2023-04-05T07:28:56Z
dc.date.issued
2022
dc.identifier.isbn
978-1-7138-7108-8
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/592945
dc.description.abstract
Optimal transport (OT) theory describes general principles to define and select, among many possible choices, the most efficient way to map a probability measure onto another. That theory has been mostly used to estimate, given a pair of source and target probability measures $(\mu,\nu)$, a parameterized map $T_\theta$ that can efficiently map $\mu$ onto $\nu$. In many applications, such as predicting cell responses to treatments, pairs of input/output data measures $(\mu,\nu)$ that define optimal transport problems do not arise in isolation but are associated with a context $c$, as for instance a treatment when comparing populations of untreated and treated cells. To account for that context in OT estimation, we introduce CondOT, a multi-task approach to estimate a family of OT maps conditioned on a context variable, using several pairs of measures $(\mu_i, \nu_i)$ tagged with a context label $c_i$. CondOT learns a global map $\mathcal{T}_{\theta}$ conditioned on context that is not only expected to fit all labeled pairs in the dataset $\{(c_i, (\mu_i, \nu_i))\}$, i.e., $\mathcal{T}_{\theta}(c_i) \sharp\mu_i \approx \nu_i$, but should also generalize to produce meaningful maps $\mathcal{T}_{\theta}(c_{\text{new}})$ when conditioned on unseen contexts $c_{\text{new}}$. Our approach harnesses and provides a novel usage for partially input convex neural networks, for which we introduce a robust and efficient initialization strategy inspired by Gaussian approximations. We demonstrate the ability of CondOT to infer the effect of an arbitrary combination of genetic or therapeutic perturbations on single cells, using only observations of the effects of said perturbations separately.
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
en_US
dc.title
Supervised Training of Conditional Monge Maps
en_US
dc.type
Conference Paper
ethz.book.title
Advances in Neural Information Processing Systems 35
en_US
ethz.pages.start
6859
en_US
ethz.pages.end
6872
en_US
ethz.event
36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022)
en_US
ethz.event.location
New Orleans, LA, USA
en_US
ethz.event.date
November 28 - December 9, 2022
en_US
ethz.notes
Poster presentation on December 1, 2022.
en_US
ethz.grant
NCCR Catalysis (phase I)
en_US
ethz.publication.place
Red Hook, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.identifier.url
https://proceedings.neurips.cc/paper_files/paper/2022/hash/2d880acd7b31e25d45097455c8e8257f-Abstract-Conference.html
ethz.identifier.url
https://nips.cc/virtual/2022/poster/53123
ethz.grant.agreementno
180544
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
NCCR full proposal
ethz.date.deposited
2023-01-17T10:50:25Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2023-04-05T07:28:57Z
ethz.rosetta.lastUpdated
2024-02-02T21:31:08Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Supervised%20Training%20of%20Conditional%20Monge%20Maps&rft.date=2022&rft.spage=6859&rft.epage=6872&rft.au=Bunne,%20Charlotte&Krause,%20Andreas&Cuturi,%20Marco&rft.isbn=978-1-7138-7108-8&rft.genre=proceeding&rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2035
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record