Metadata only
Date
2022-10-23Type
- Working Paper
ETH Bibliography
yes
Altmetrics
Abstract
Let $\mathbb{K}$ be a number field with ring of integers $\mathfrak{O}$ and let $\mathcal{G}$ be a Chevalley group scheme not of type $\mathtt{E}_8$, $\mathtt{F}_4$ or $\mathtt{G}_2$. We use the theory of Tits buildings and a result of Tóth on Steinberg modules to prove that $H^{\operatorname{vcd}}(\mathcal{G}(\mathfrak{O}); \mathbb{Q}) = 0$ if $\mathfrak{O}$ is Euclidean. Show more
Publication status
publishedJournal / series
arXivPages / Article No.
Publisher
Cornell UniversityEdition / version
v1Subject
Algebraic Topology (math.AT); Group Theory (math.GR); Number Theory (math.NT); FOS: Mathematics; 11F75, 20E42, 57M07Organisational unit
08802 - Iozzi, Alessandra (Tit.-Prof.)
02500 - Forschungsinstitut für Mathematik / Institute for Mathematical Research
More
Show all metadata
ETH Bibliography
yes
Altmetrics