Show simple item record

dc.contributor.author
Bollinger, Dino
dc.contributor.author
Kubicek, Karel
dc.contributor.author
Cotrini, Carlos
dc.contributor.author
Basin, David
dc.contributor.editor
Butler, Kevin
dc.contributor.editor
Thomas, Kurt
dc.date.accessioned
2022-11-09T10:41:09Z
dc.date.available
2022-11-09T10:39:32Z
dc.date.available
2022-11-09T10:41:09Z
dc.date.issued
2022
dc.identifier.isbn
978-1-939133-31-1
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/580225
dc.identifier.doi
10.3929/ethz-b-000525815
dc.description.abstract
The European Union’s General Data Protection Regulation (GDPR) requires websites to inform users about personal data collection and request consent for cookies. Yet the majority of websites do not give users any choices, and others attempt to deceive them into accepting all cookies. We document the severity of this situation through an analysis of potential GDPR violations in cookie banners in almost 30k websites. We identify six novel violation types, such as incorrect category assignments and misleading expiration times, and we find at least one potential violation in a surprising 94.7% of the analyzed websites. We address this issue by giving users the power to protect their privacy. We develop a browser extension, called CookieBlock, that uses machine learning to enforce GDPR cookie consent at the client. It automatically categorizes cookies by usage purpose using only the information provided in the cookie itself. At a mean validation accuracy of 84.4%, our model attains a prediction quality competitive with expert knowledge in the field. Additionally, our approach differs from prior work by not relying on the cooperation of websites themselves. We empirically evaluate CookieBlock on a set of 100 randomly sampled websites, on which it filters roughly 90% of the privacy-invasive cookies without significantly impairing website functionality.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
USENIX Association
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Automating Cookie Consent and GDPR Violation Detection
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.book.title
Proceedings of the 31st USENIX Security Symposium
ethz.pages.start
2893
en_US
ethz.pages.end
2910
en_US
ethz.size
20 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
31st USENIX Security Symposium (USENIX Security 2022)
ethz.event.location
Boston, MA, USA
ethz.event.date
August 10-12, 2022
ethz.identifier.wos
ethz.publication.place
Berkeley, CA
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02660 - Institut für Informationssicherheit / Institute of Information Security
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02660 - Institut für Informationssicherheit / Institute of Information Security::03634 - Basin, David / Basin, David
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02660 - Institut für Informationssicherheit / Institute of Information Security::03634 - Basin, David / Basin, David
ethz.identifier.orcidWorkCode
103793296
ethz.identifier.url
https://www.usenix.org/conference/usenixsecurity22/presentation/bollinger
ethz.relation.cites
10.3929/ethz-b-000477333
ethz.date.deposited
2022-01-14T17:01:19Z
ethz.source
FORM
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-11-09T10:40:03Z
ethz.rosetta.lastUpdated
2024-02-02T18:52:30Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/525815
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/579330
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Automating%20Cookie%20Consent%20and%20GDPR%20Violation%20Detection&rft.date=2022&rft.spage=2893&rft.epage=2910&rft.au=Bollinger,%20Dino&Kubicek,%20Karel&Cotrini,%20Carlos&Basin,%20David&rft.isbn=978-1-939133-31-1&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%2031st%20USENIX%20Security%20Symposium
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record