Show simple item record

dc.contributor.author
Jiang, Jiaxi
dc.contributor.author
Zhang, Kai
dc.contributor.author
Timofte, Radu
dc.date.accessioned
2022-07-11T08:03:48Z
dc.date.available
2022-07-09T11:23:25Z
dc.date.available
2022-07-11T08:03:48Z
dc.date.issued
2021
dc.identifier.isbn
978-1-6654-2812-5
en_US
dc.identifier.isbn
978-1-6654-2813-2
en_US
dc.identifier.other
10.1109/ICCV48922.2021.00495
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/556981
dc.description.abstract
Training a single deep blind model to handle different quality factors for JPEG image artifacts removal has been attracting considerable attention due to its convenience for practical usage. However, existing deep blind methods usually directly reconstruct the image without predicting the quality factor, thus lacking the flexibility to control the output as the non-blind methods. To remedy this problem, in this paper, we propose a flexible blind convolutional neural network, namely FBCNN, that can predict the adjustable quality factor to control the trade-off between artifacts removal and details preservation. Specifically, FBCNN decouples the quality factor from the JPEG image via a decoupler module and then embeds the predicted quality factor into the subsequent reconstructor module through a quality factor attention block for flexible control. Besides, We find existing methods are prone to fail on non-aligned double JPEG images even with only one pixel shift, and we thus propose a double JPEG degradation model to augment the training data. Extensive experiments on single JPEG images, more general double JPEG images and real-world JPEG images demonstrate that our proposed FBCNN achieves favorable performance against state-of-the-art methods in terms of both quantitative metrics and visual quality.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Low-level and physics-based vision
en_US
dc.subject
Computational photography
en_US
dc.title
Towards Flexible Blind JPEG Artifacts Removal
en_US
dc.type
Conference Paper
dc.date.published
2022-02-28
ethz.book.title
2021 IEEE/CVF International Conference on Computer Vision (ICCV)
en_US
ethz.pages.start
4977
en_US
ethz.pages.end
4986
en_US
ethz.event
18th IEEE/CVF International Conference on Computer Vision (ICCV 2021)
en_US
ethz.event.location
Online
ethz.event.date
October 11-17, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
ethz.publication.status
published
en_US
ethz.date.deposited
2022-07-09T11:24:20Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-07-11T08:03:56Z
ethz.rosetta.lastUpdated
2024-02-02T17:36:39Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Towards%20Flexible%20Blind%20JPEG%20Artifacts%20Removal&rft.date=2021&rft.spage=4977&rft.epage=4986&rft.au=Jiang,%20Jiaxi&Zhang,%20Kai&Timofte,%20Radu&rft.isbn=978-1-6654-2812-5&978-1-6654-2813-2&rft.genre=proceeding&rft_id=info:doi/10.1109/ICCV48922.2021.00495&rft.btitle=2021%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record