Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation
dc.contributor.author
Sarfraz, M. Saquib
dc.contributor.author
Murray, Naila
dc.contributor.author
Sharma, Vivek
dc.contributor.author
Diba, Ali
dc.contributor.author
Van Gool, Luc
dc.contributor.author
Stiefelhagen, Rainer
dc.date.accessioned
2022-02-21T13:02:01Z
dc.date.available
2022-01-30T03:40:35Z
dc.date.available
2022-02-21T13:02:01Z
dc.date.issued
2021
dc.identifier.isbn
978-1-6654-4509-2
en_US
dc.identifier.isbn
978-1-6654-4510-8
en_US
dc.identifier.other
10.1109/CVPR46437.2021.01107
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/529761
dc.description.abstract
Action segmentation refers to inferring boundaries of semantically consistent visual concepts in videos and is an important requirement for many video understanding tasks. For this and other video understanding tasks, supervised approaches have achieved encouraging performance but require a high volume of detailed frame-level annotations. We present a fully automatic and unsupervised approach for segmenting actions in a video that does not require any training. Our proposal is an effective temporally-weighted hierarchical clustering algorithm that can group semantically consistent frames of the video. Our main finding is that representing a video with a 1-nearest neighbor graph by taking into account the time progression is sufficient to form semantically and temporally consistent clusters of frames where each cluster may represent some action in the video. Additionally, we establish strong unsupervised baselines for action segmentation and show significant performance improvements over published unsupervised methods on five challenging action segmentation datasets. Our code is available.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation
en_US
dc.type
Conference Paper
dc.date.published
2021-11-13
ethz.book.title
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
en_US
ethz.pages.start
11220
en_US
ethz.pages.end
11229
en_US
ethz.event
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021)
en_US
ethz.event.location
Online
en_US
ethz.event.date
June 19-25, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2022-01-30T03:41:20Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-02-21T13:02:16Z
ethz.rosetta.lastUpdated
2022-02-21T13:02:16Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Temporally-Weighted%20Hierarchical%20Clustering%20for%20Unsupervised%20Action%20Segmentation&rft.date=2021&rft.spage=11220&rft.epage=11229&rft.au=Sarfraz,%20M.%20Saquib&Murray,%20Naila&Sharma,%20Vivek&Diba,%20Ali&Van%20Gool,%20Luc&rft.isbn=978-1-6654-4509-2&978-1-6654-4510-8&rft.genre=proceeding&rft_id=info:doi/10.1109/CVPR46437.2021.01107&rft.btitle=2021%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35602]