Show simple item record

dc.contributor.author
Magnard, Paul
dc.contributor.supervisor
Wallraff, Andreas
dc.contributor.supervisor
Chu, Yiwen
dc.date.accessioned
2022-01-24T08:10:13Z
dc.date.available
2022-01-23T21:23:27Z
dc.date.available
2022-01-24T08:10:13Z
dc.date.issued
2021
dc.identifier.uri
http://hdl.handle.net/20.500.11850/527692
dc.identifier.doi
10.3929/ethz-b-000527692
dc.description.abstract
A Bell test is a hardware agnostic experimental procedure which can reject classes of physical theories and be used to certify randomness or secure communications with untrusted devices. Violating a Bell inequality without any of the major loopholes - detection, freedom-of-choice, and locality - is an outstanding challenge which has been achieved only in a handful of experiments, using either NV centers, trapped ions, or optical photons. However, Bell tests with superconducting circuits, a top-contending quantum computing platform, have so far ignored the locality loophole due to the difficulty to entangle physically remote systems without an optical photon interface. In this thesis, I report the work we have done at the Quantum Device Lab towards realizing a loophole-free Bell test using superconducting qubits entangled using microwave photons. To minimize the distance required between the two Bell parties to close the locality loophole, we have developed a new readout parameter optimization procedure enabling the discrimination of a transmon qubit state with high fidelity in a record speed. We have also designed and realized a modular cryogenic link technology to connect superconducting circuits housed in separate dilution refrigerators and separated by a distance of up to 30 m with a milli-Kelvin temperature, lossless waveguide, which acts as a microwave quantum bus between the remote quantum systems. Using a microwave-activated sideband transition, we demonstrate the possibility to transfer qubit excitation via the successive emission and absorption of a single microwave photon with time-reversal-symmetric envelope, propagating within the cryogenic link. We also demonstrate a simple method to unconditionally reset the transmon qubits in record time and fidelity using this very sideband emission. Using the photon transfer scheme, we transfer qubit states, generate entangled states, and violate Bell's inequality with predetermined measurement settings, using two transmon qubits separated by up to 30 m. In the same experimental setup, we demonstrate random measurement-basis choice in less than 30 ns, and high-fidelity qubit readout in 50 ns. Therefore, this setup should be able to realize a signifiant loophole-free Bell test, with repetition rates exceeding 10 kHz. This would put yet-unachieved device-independent tasks within reach and would demonstrate the potential to use microwave photons for realizing local area quantum networks.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum Computing
en_US
dc.subject
Quantum communication
en_US
dc.subject
Bell inequalities
en_US
dc.subject
superconducting qubits
en_US
dc.subject
Cryogenics
en_US
dc.title
Meter-scale Microwave Quantum Networks for Superconducting Circuits
en_US
dc.type
Doctoral Thesis
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-01-24
ethz.size
276 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::530 - Physics
en_US
ethz.grant
Superconducting Quantum Networks
en_US
ethz.grant
Quantum Local Area Networks with Superconducting Qubits
en_US
ethz.identifier.diss
28040
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02505 - Laboratorium für Festkörperphysik / Laboratory for Solid State Physics::03720 - Wallraff, Andreas / Wallraff, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02505 - Laboratorium für Festkörperphysik / Laboratory for Solid State Physics::03720 - Wallraff, Andreas / Wallraff, Andreas
en_US
ethz.grant.agreementno
339871
ethz.grant.agreementno
899354
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
FP7
ethz.grant.program
H2020
ethz.date.deposited
2022-01-23T21:23:33Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-01-24T08:10:20Z
ethz.rosetta.lastUpdated
2023-02-06T23:54:36Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Meter-scale%20Microwave%20Quantum%20Networks%20for%20Superconducting%20Circuits&rft.date=2021&rft.au=Magnard,%20Paul&rft.genre=unknown&rft.btitle=Meter-scale%20Microwave%20Quantum%20Networks%20for%20Superconducting%20Circuits
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record