Show simple item record

dc.contributor.author
de Goederen, Veerle
dc.contributor.author
Vetter, Roman
dc.contributor.author
McDole, Katie
dc.contributor.author
Iber, Dagmar
dc.date.accessioned
2022-11-21T08:56:25Z
dc.date.available
2022-01-18T09:59:38Z
dc.date.available
2022-01-24T13:26:46Z
dc.date.available
2022-11-21T08:56:25Z
dc.date.issued
2021-10-23
dc.identifier.other
10.1101/2021.10.22.465433
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/526486
dc.identifier.doi
10.3929/ethz-b-000526486
dc.description.abstract
Neurulation is the process in early vertebrate embryonic development during which the neural plate folds to form the neural tube. Spinal neural tube folding in the posterior neuropore changes over time, first showing a median hingepoint, then both the median hingepoint and dorsolateral hingepoints, followed by dorsolateral hingepoints only. The biomechanical mechanism of hingepoint formation in the mammalian neural tube is poorly understood. Here, we employ a mechanical finite element model to study neural tube formation. The computational model mimics the mammalian neural tube using microscopy data from mouse and human embryos. While intrinsic curvature at the neural plate midline has been hypothesized to drive neural tube folding, intrinsic curvature was not sufficient for tube closure in our simulations. We achieved neural tube closure with an alternative model combining mesoderm expansion, non-neural ectoderm expansion and neural plate adhesion to the notochord. Dorsolateral hingepoints emerged in simulations with low mesoderm expansion and zippering. We propose that zippering provides the biomechanical force for dorsolateral hingepoint formation in settings where the neural plate lateral sides extend above the mesoderm. Together, these results provide a new perspective on the biomechanical and molecular mechanism of mammalian spinal neurulation.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cold Spring Harbor Laboratory
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.title
Hingepoint emergence in mammalian spinal neurulation
en_US
dc.type
Working Paper
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
ethz.journal.title
bioRxiv
ethz.size
14 p.
en_US
ethz.grant
A 3D Cell-Based Simulation Framework for Morphogenetic Problems
en_US
ethz.publication.place
Cold Spring Harbor, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03791 - Iber, Dagmar / Iber, Dagmar
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03791 - Iber, Dagmar / Iber, Dagmar
en_US
ethz.grant.agreementno
170930
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Interdisziplinäres Projekt
ethz.relation.isPreviousVersionOf
10.3929/ethz-b-000547416
ethz.date.deposited
2022-01-18T09:59:44Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-01-24T13:26:52Z
ethz.rosetta.lastUpdated
2023-02-07T07:58:10Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Hingepoint%20emergence%20in%20mammalian%20spinal%20neurulation&rft.jtitle=bioRxiv&rft.date=2021-10-23&rft.au=de%20Goederen,%20Veerle&Vetter,%20Roman&McDole,%20Katie&Iber,%20Dagmar&rft.genre=preprint&rft_id=info:doi/10.1101/2021.10.22.465433&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record