CalQNet - Detection of calibration quality for life-long stereo camera setups
dc.contributor.author
Zhong, Jiapeng
dc.contributor.author
Ye, Zheyu
dc.contributor.author
Cramariuc, Andrei
dc.contributor.author
Tschopp, Florian
dc.contributor.author
Chung, Jen Jen
dc.contributor.author
Siegwart, Roland
dc.contributor.author
Cadena, Cesar
dc.date.accessioned
2021-11-18T08:59:04Z
dc.date.available
2021-11-18T04:52:11Z
dc.date.available
2021-11-18T08:59:04Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7281-5394-0
en_US
dc.identifier.isbn
978-1-7281-5393-3
en_US
dc.identifier.isbn
978-1-7281-5395-7
en_US
dc.identifier.other
10.1109/IV48863.2021.9575916
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/515695
dc.description.abstract
Many mobile robotic platforms rely on an accurate knowledge of the extrinsic calibration parameters, especially systems performing visual stereo matching. Although a number of accurate stereo camera calibration methods have been developed, which provide good initial 'factory' calibrations, the determined parameters can lose their validity over time as the sensors are exposed to environmental conditions and external effects. Thus, on autonomous platforms on-board diagnostic methods for an early detection of the need to repeat calibration procedures have the potential to prevent critical failures of crucial systems, such as state estimation or obstacle detection. In this work, we present a novel data-driven method to estimate the quality of extrinsic calibration and detect discrepancies between the original calibration and the current system state for stereo camera systems. The framework consists of a novel dataset generation pipeline to train CalQNet, a deep convolutional neural network. CalQNet can estimate the extrinsic calibration quality using a new metric that approximates the degree of miscalibration in stereo setups. We show the framework's ability to predict the divergence of a state-of-the-art stereo-visual odometry system following a degraded calibration in two real-world experiments.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
CalQNet - Detection of calibration quality for life-long stereo camera setups
en_US
dc.type
Conference Paper
dc.date.published
2021-11-13
ethz.book.title
2021 IEEE Intelligent Vehicles Symposium (IV)
en_US
ethz.pages.start
1312
en_US
ethz.pages.end
1318
en_US
ethz.event
32nd IEEE Inteligent Vehicle Symposium (IV21)
en_US
ethz.event.location
Online
en_US
ethz.event.date
July 11-17, 2021
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.date.deposited
2021-11-18T04:52:21Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-11-18T08:59:11Z
ethz.rosetta.lastUpdated
2023-02-06T23:20:36Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=CalQNet%20-%20Detection%20of%20calibration%20quality%20for%20life-long%20stereo%20camera%20setups&rft.date=2021&rft.spage=1312&rft.epage=1318&rft.au=Zhong,%20Jiapeng&Ye,%20Zheyu&Cramariuc,%20Andrei&Tschopp,%20Florian&Chung,%20Jen%20Jen&rft.isbn=978-1-7281-5394-0&978-1-7281-5393-3&978-1-7281-5395-7&rft.genre=proceeding&rft_id=info:doi/10.1109/IV48863.2021.9575916&rft.btitle=2021%20IEEE%20Intelligent%20Vehicles%20Symposium%20(IV)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35475]