Show simple item record

dc.contributor.author
Pouget, Angeline
dc.contributor.author
Ramesh, Sidharth
dc.contributor.author
Giang, Maximilian
dc.contributor.author
Chandrapalan, Ramithan
dc.contributor.author
Tanner, Toni
dc.contributor.author
Prussing, Moritz
dc.contributor.author
Timofte, Radu
dc.contributor.author
Ignatov, Andrey
dc.date.accessioned
2021-10-14T07:05:03Z
dc.date.available
2021-10-09T02:57:19Z
dc.date.available
2021-10-14T07:05:03Z
dc.date.issued
2021
dc.identifier.isbn
978-1-6654-4899-4
en_US
dc.identifier.isbn
978-1-6654-4900-7
en_US
dc.identifier.other
10.1109/CVPRW53098.2021.00290
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/508882
dc.description.abstract
AI-powered automatic camera scene detection mode is nowadays available in nearly any modern smartphone, though the problem of accurate scene prediction has not yet been addressed by the research community. This paper for the first time carefully defines this problem and proposes a novel Camera Scene Detection Dataset (CamSDD) containing more than 11K manually crawled images belonging to 30 different scene categories. We propose an efficient and NPU-friendly CNN model for this task that demonstrates a top-3 accuracy of 99.5% on this dataset and achieves more than 200 FPS on the recent mobile SoCs. An additional in-the-wild evaluation of the obtained solution is performed to analyze its performance and limitation in the real-world scenarios. The dataset and pre-trained models used in this paper are available on the project website.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
Fast and accurate camera scene detection on smartphones
en_US
dc.type
Conference Paper
dc.date.published
2021-09-01
ethz.book.title
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
en_US
ethz.pages.start
2569
en_US
ethz.pages.end
2580
en_US
ethz.event
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2021)
en_US
ethz.event.location
Online
en_US
ethz.event.date
June 19-25, 2021
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
ethz.date.deposited
2021-10-09T02:57:21Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-10-14T07:05:09Z
ethz.rosetta.lastUpdated
2022-03-29T14:12:12Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Fast%20and%20accurate%20camera%20scene%20detection%20on%20smartphones&rft.date=2021&rft.spage=2569&rft.epage=2580&rft.au=Pouget,%20Angeline&Ramesh,%20Sidharth&Giang,%20Maximilian&Chandrapalan,%20Ramithan&Tanner,%20Toni&rft.isbn=978-1-6654-4899-4&978-1-6654-4900-7&rft.genre=proceeding&rft_id=info:doi/10.1109/CVPRW53098.2021.00290&rft.btitle=2021%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record