Show simple item record

dc.contributor.author
Fischer, Marc
dc.contributor.author
Baader, Maximilian
dc.contributor.author
Vechev, Martin
dc.contributor.editor
Meila, Marina
dc.contributor.editor
Zhang, Tong
dc.date.accessioned
2021-09-28T11:14:49Z
dc.date.available
2021-09-25T02:36:16Z
dc.date.available
2021-09-28T11:14:49Z
dc.date.issued
2021
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/20.500.11850/506978
dc.description.abstract
We present a new certification method for image and point cloud segmentation based on randomized smoothing. The method leverages a novel scalable algorithm for prediction and certification that correctly accounts for multiple testing, necessary for ensuring statistical guarantees. The key to our approach is reliance on established multiple-testing correction mechanisms as well as the ability to abstain from classifying single pixels or points while still robustly segmenting the overall input. Our experimental evaluation on synthetic data and challenging datasets, such as Pascal Context, Cityscapes, and ShapeNet, shows that our algorithm can achieve, for the first time, competitive accuracy and certification guarantees on real-world segmentation tasks. We provide an implementation at https://github.com/eth-sri/segmentation-smoothing.
en_US
dc.language.iso
en
en_US
dc.publisher
PMLR
en_US
dc.title
Scalable Certified Segmentation via Randomized Smoothing
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of the 38th International Conference on Machine Learning
en_US
ethz.journal.title
Proceedings of Machine Learning Research
ethz.journal.volume
139
en_US
ethz.pages.start
3340
en_US
ethz.pages.end
3351
en_US
ethz.event
38th International Conference on Machine Learning (ICML 2021)
en_US
ethz.event.location
Online
en_US
ethz.event.date
July 18-24, 2021
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02664 - Inst. f. Programmiersprachen u. -systeme / Inst. Programming Languages and Systems::03948 - Vechev, Martin / Vechev, Martin
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02261 - Center for Sustainable Future Mobility / Center for Sustainable Future Mobility
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02664 - Inst. f. Programmiersprachen u. -systeme / Inst. Programming Languages and Systems::03948 - Vechev, Martin / Vechev, Martin
ethz.identifier.url
https://proceedings.mlr.press/v139/fischer21a.html
ethz.date.deposited
2021-09-25T02:36:39Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-09-28T11:14:55Z
ethz.rosetta.lastUpdated
2024-02-02T14:45:52Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Scalable%20Certified%20Segmentation%20via%20Randomized%20Smoothing&rft.jtitle=Proceedings%20of%20Machine%20Learning%20Research&rft.date=2021&rft.volume=139&rft.spage=3340&rft.epage=3351&rft.issn=2640-3498&rft.au=Fischer,%20Marc&Baader,%20Maximilian&Vechev,%20Martin&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%2038th%20International%20Conference%20on%20Machine%20Learning
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record