Adversarial Robustness for Code
dc.contributor.author
Bielik, Pavol
dc.contributor.author
Vechev, Martin
dc.contributor.editor
Daumé III, Hal
dc.contributor.editor
Singh, Aarti
dc.date.accessioned
2021-09-15T13:40:10Z
dc.date.available
2021-09-15T13:40:10Z
dc.date.issued
2020
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/20.500.11850/505630
dc.identifier.doi
10.3929/ethz-b-000466229
dc.description.abstract
Machine learning and deep learning in particular has been recently used to successfully address many tasks in the domain of code such as finding and fixing bugs, code completion, decompilation, type inference and many others. However, the issue of adversarial robustness of models for code has gone largely unnoticed. In this work, we explore this issue by: (i) instantiating adversarial attacks for code (a domain with discrete and highly structured inputs), (ii) showing that, similar to other domains, neural models for code are vulnerable to adversarial attacks, and (iii) combining existing and novel techniques to improve robustness while preserving high accuracy.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
PLMR
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Adversarial Robustness for Code
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.book.title
Proceedings of the 37th International Conference on Machine Learning
en_US
ethz.journal.title
Proceedings of Machine Learning Research
ethz.journal.volume
119
en_US
ethz.pages.start
896
en_US
ethz.pages.end
907
en_US
ethz.size
18 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
37th International Conference on Machine Learning (ICML 2020) (virtual)
en_US
ethz.event.location
Vienna, Austria
en_US
ethz.event.date
July 13-18, 2020
en_US
ethz.notes
Conference lecture held on July 14, 2020. Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.grant
Learning from Big Code: Probabilistic Models, Analysis and Synthesis
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02664 - Inst. f. Programmiersprachen u. -systeme / Inst. Programming Languages and Systems::03948 - Vechev, Martin / Vechev, Martin
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02664 - Inst. f. Programmiersprachen u. -systeme / Inst. Programming Languages and Systems::03948 - Vechev, Martin / Vechev, Martin
en_US
ethz.identifier.url
http://proceedings.mlr.press/v119/bielik20a.html
ethz.grant.agreementno
680358
ethz.grant.agreementno
680358
ethz.grant.agreementno
680358
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.relation.isCitedBy
10.3929/ethz-b-000498126
ethz.date.deposited
2021-01-28T10:07:53Z
ethz.source
WOS
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-09-15T13:40:20Z
ethz.rosetta.lastUpdated
2022-03-29T11:55:40Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/505543
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/466229
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Adversarial%20Robustness%20for%20Code&rft.jtitle=Proceedings%20of%20Machine%20Learning%20Research&rft.date=2020&rft.volume=119&rft.spage=896&rft.epage=907&rft.issn=2640-3498&rft.au=Bielik,%20Pavol&Vechev,%20Martin&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%2037th%20International%20Conference%20on%20Machine%20Learning
Files in this item
Publication type
-
Conference Paper [35553]