A deep learning model for predicting route choice in public transport
dc.contributor.author
Marra, Alessio Daniele
dc.contributor.author
Corman, Francesco
dc.date.accessioned
2021-09-06T05:51:29Z
dc.date.available
2021-09-05T13:38:16Z
dc.date.available
2021-09-06T05:51:29Z
dc.date.issued
2021-09
dc.identifier.uri
http://hdl.handle.net/20.500.11850/504159
dc.identifier.doi
10.3929/ethz-b-000504159
dc.description.abstract
Deep learning has been recently applied as an alternative method for several choice problems, such as mode choice. Nevertheless, this method has not been particularly explored for route choice, despite its possible advantages.
This work proposes a novel model for predicting route choice in public transport based on a convolutional neural network. The model has several advantages compared to the state of the art (e.g., Path Size Logit model). First, the model can infer a nonlinear utility function for the available routes. Second, it can also easily include any non-alternative-specific variable, such as socioeconomic characteristics or weather conditions, allowing complex interactions with all other variables. Third, the model generalizes the Path Size Logit, and thus can obtain the same or better performance.
The model is tested on a large-scale study based on GPS tracking, observing more than 2700 public transport trips of Zurich residents. The model is tested also on a synthetic dataset, to study its properties, performance, and ability to describe different utility functions. Finally, the performances of the model are compared with the state of the art.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
STRC
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Deep learning
en_US
dc.subject
Public transport
en_US
dc.subject
Route choice
en_US
dc.subject
Choice models
en_US
dc.subject
Machine learning
en_US
dc.title
A deep learning model for predicting route choice in public transport
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
21st Swiss Transport Research Conference (STRC 2021)
en_US
ethz.event.location
Ascona, Switzerland
en_US
ethz.event.date
September 12–14, 2021
en_US
ethz.publication.place
Ascona
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::09611 - Corman, Francesco / Corman, Francesco
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
*
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::09611 - Corman, Francesco / Corman, Francesco
en_US
ethz.date.deposited
2021-09-05T13:38:28Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-09-06T05:51:35Z
ethz.rosetta.lastUpdated
2023-02-06T22:24:27Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20deep%20learning%20model%20for%20predicting%20route%20choice%20in%20public%20transport&rft.date=2021-09&rft.au=Marra,%20Alessio%20Daniele&Corman,%20Francesco&rft.genre=proceeding&rft.btitle=A%20deep%20learning%20model%20for%20predicting%20route%20choice%20in%20public%20transport
Files in this item
Publication type
-
Conference Paper [35646]