A review of real-time railway and metro rescheduling models using learning algorithms
dc.contributor.author
Jusup, Matej
dc.contributor.author
Trivella, Alessio
dc.contributor.author
Corman, Francesco
dc.date.accessioned
2022-10-11T06:34:41Z
dc.date.available
2021-09-05T13:16:13Z
dc.date.available
2021-09-06T05:46:33Z
dc.date.available
2021-10-08T13:04:29Z
dc.date.available
2022-10-11T06:34:41Z
dc.date.issued
2021-09
dc.identifier.uri
http://hdl.handle.net/20.500.11850/504155
dc.identifier.doi
10.3929/ethz-b-000504155
dc.description.abstract
Planning railway and metro systems includes the critical step of finding a schedule for the trains. Although buffer times and running supplements are added to the schedule to make operations resilient to minor disturbances, they do not protect against all possible events that may lead to conflicts during everyday operations. Thus, real-time train rescheduling models are needed to restore feasibility using actions such as retiming, reordering, rerouting, overtaking or cancelling of trains. Unfortunately, despite many rescheduling models that have been developed in the literature, only a few can learn actions from past, simulated, or ongoing events and cope with disturbances and disruptions’ stochastic nature. However, the last decade’s expansion of learning algorithms is gaining momentum in the train rescheduling literature by bringing promising novel ideas. This paper aims to review the state-of-the-art learning algorithms applied to the real-time railway and metro rescheduling, identifying challenges and opportunities while making a parallel with other areas where learning algorithms led to breakthroughs.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
STRC
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Reinforcement learning
en_US
dc.subject
Approximiate dynamic programming
en_US
dc.subject
Train rescheduling
en_US
dc.subject
Delay propagation
en_US
dc.title
A review of real-time railway and metro rescheduling models using learning algorithms
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
27 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
21st Swiss Transport Research Conference (STRC 2021)
en_US
ethz.event.location
Ascona, Switzerland
en_US
ethz.event.date
September 12–14, 2021
en_US
ethz.publication.place
Ascona
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::09611 - Corman, Francesco / Corman, Francesco
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::09611 - Corman, Francesco / Corman, Francesco
en_US
ethz.relation.isDocumentedBy
10.3929/ethz-b-000506637
ethz.relation.isVariantFormOf
10.3929/ethz-b-000500351
ethz.date.deposited
2021-09-05T13:16:18Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.date.embargoend
2022-10-08
ethz.rosetta.installDate
2021-09-06T05:46:40Z
ethz.rosetta.lastUpdated
2023-02-07T07:02:28Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20review%20of%20real-time%20railway%20and%20metro%20rescheduling%20models%20using%20learning%20algorithms&rft.date=2021-09&rft.au=Jusup,%20Matej&Trivella,%20Alessio&Corman,%20Francesco&rft.genre=proceeding&rft.btitle=A%20review%20of%20real-time%20railway%20and%20metro%20rescheduling%20models%20using%20learning%20algorithms
Files in this item
Publication type
-
Conference Paper [35602]