On the reversed bias-variance tradeoff in deep ensembles
dc.contributor.author
Kobayashi, Seijin
dc.contributor.author
von Oswald, Johannes
dc.contributor.author
Grewe, Benjamin
dc.date.accessioned
2024-05-29T07:00:12Z
dc.date.available
2021-08-20T13:17:46Z
dc.date.available
2021-08-23T04:46:19Z
dc.date.available
2021-08-23T04:47:20Z
dc.date.available
2024-05-29T07:00:12Z
dc.date.issued
2021-07-23
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501624
dc.identifier.doi
10.3929/ethz-b-000501624
dc.description.abstract
Deep ensembles aggregate predictions of diverse neural networks to improve generalisation and quantify uncertainty. Here, we investigate their behavior when increasing the ensemble members’ parameter size - a practice typically associated with better performance for single models. We show that under practical assumptions in the overparametrized regime far into the double descent curve, not only the ensemble test loss degrades, but common out-of-distribution detection and calibration metrics suffer as well. Reminiscent to deep double descent, we observe this phenomenon not only when increasing the single member’s capacity but also as we increase the training budget, suggesting deep ensembles can benefit from early stopping. This sheds light on the success and failure modes of deep ensembles and suggests that averaging finite width models perform better than the neural tangent kernel limit for these metrics.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
International Conference on Machine Learning
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
On the reversed bias-variance tradeoff in deep ensembles
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
8 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
Workshop on Uncertainty and Robustness in Deep Learning (ICML UDL 2021)
en_US
ethz.event.location
Online
en_US
ethz.event.date
July 23, 2021
en_US
ethz.notes
Conference lecture held at the poster session 1 on July 23, 2021.
en_US
ethz.publication.place
San Diego, CA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09479 - Grewe, Benjamin / Grewe, Benjamin
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09479 - Grewe, Benjamin / Grewe, Benjamin
ethz.relation.isPartOf
https://sites.google.com/view/udlworkshop2021/accepted-papers
ethz.date.deposited
2021-08-20T13:17:53Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-23T04:46:26Z
ethz.rosetta.lastUpdated
2022-03-29T11:16:40Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20the%20reversed%20bias-variance%20tradeoff%20in%20deep%20ensembles&rft.date=2021-07-23&rft.au=Kobayashi,%20Seijin&von%20Oswald,%20Johannes&Grewe,%20Benjamin&rft.genre=proceeding&rft.btitle=On%20the%20reversed%20bias-variance%20tradeoff%20in%20deep%20ensembles
Dateien zu diesem Eintrag
Publikationstyp
-
Conference Paper [35670]