Nonlinear Model Predictive Control for Coordinated Traffic Flow Management in Highway Systems
dc.contributor.author
Chavoshi, Kimia
dc.contributor.author
Kouvelas, Anastasios
dc.date.accessioned
2021-07-16T13:02:57Z
dc.date.available
2021-07-16T13:02:57Z
dc.date.issued
2020
dc.identifier.isbn
978-3-90714-402-2
en_US
dc.identifier.isbn
978-1-7281-8813-3
en_US
dc.identifier.other
10.23919/ECC51009.2020.9143962
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/495530
dc.identifier.doi
10.3929/ethz-b-000402201
dc.description.abstract
The growing level of freeway traffic congestion comprises an everyday life issue with social, economic, and environmental implications for modern metropolitan areas. There is evidence that Variable Speed Limits (VSL) and Ramp Metering (RM) are two effective practical approaches to ameliorate traffic congestion. In this work we use the augmented METANET model, which is one of the most widely used macroscopic models for freeway traffic, to demonstrate the positive effects that these approaches can have on traffic flow and congestion. Since the modified METANET is a nonlinear model, nonlinear model predictive control (NLMPC) is a control method pathway for this system. It performs as a recursive on-line finite-horizon optimization of nonlinear problems, subject to the system dynamics and additional constraints, and has the privilege of prediction of future system states. We utilized the NLMPC method for the coordination of VSL and RM in highway networks. We simulate the implementation of the proposed control method on a freeway that contains a typical setting of on-ramps, off-ramps, as well as a lane drop that creates a physical bottleneck. The simulation results demonstrate significant improvement in the traffic flow conditions and provide useful insights about the way that VSL and RM manage to achieve this improvement. Understanding the special characteristics of capacity drop in highways, and how to ameliorate it, is crucial for future large-scale implementations. © 2020 EUCA.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Nonlinear Model Predictive Control for Coordinated Traffic Flow Management in Highway Systems
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2020-07-20
ethz.book.title
2020 European Control Conference (ECC)
en_US
ethz.pages.start
428
en_US
ethz.pages.end
433
en_US
ethz.size
6 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
18th European Control Conference (ECC 2020) (virtual)
en_US
ethz.event.location
St. Petersburg, Russia
en_US
ethz.event.date
May 12-15, 2020
en_US
ethz.notes
Due to the Corona virus (COVID-19) the conference was conducted virtually.
en_US
ethz.grant
Real-time traffic estimation and control in a connected environment
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::08686 - Gruppe Strassenverkehrstechnik
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::08686 - Gruppe Strassenverkehrstechnik
en_US
ethz.grant.agreementno
188622
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2020-02-28T11:41:58Z
ethz.source
WOS
ethz.source
SCOPUS
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-07-16T13:03:06Z
ethz.rosetta.lastUpdated
2022-03-29T10:27:23Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/439462
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/402201
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/495299
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/440526
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Nonlinear%20Model%20Predictive%20Control%20for%20Coordinated%20Traffic%20Flow%20Management%20in%20Highway%20Systems&rft.date=2020&rft.spage=428&rft.epage=433&rft.au=Chavoshi,%20Kimia&Kouvelas,%20Anastasios&rft.isbn=978-3-90714-402-2&978-1-7281-8813-3&rft.genre=proceeding&rft_id=info:doi/10.23919/ECC51009.2020.9143962&rft.btitle=2020%20European%20Control%20Conference%20(ECC)
Dateien zu diesem Eintrag
Publikationstyp
-
Conference Paper [35602]