Show simple item record

dc.contributor.author
Sevim, Semih
dc.contributor.supervisor
de Mello, Andrew J.
dc.contributor.supervisor
Puigmarti-Luis, Josep
dc.contributor.supervisor
Pané, Salvador
dc.date.accessioned
2021-04-08T12:46:20Z
dc.date.available
2021-04-08T12:00:27Z
dc.date.available
2021-04-08T12:46:20Z
dc.date.issued
2021
dc.identifier.uri
http://hdl.handle.net/20.500.11850/477923
dc.identifier.doi
10.3929/ethz-b-000477923
dc.description.abstract
Self-assembly is a crucial process in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. However, its control has been merely achieved via synthetic chemistry approaches, following rational molecular designs. This thesis focuses on controlling self-assembly processes via microfluidic technologies. Studies presented in this thesis show that microfluidic devices can allow an advanced spatiotemporal command of reagents; a feature that can strongly affect the outcome of a reaction. First, it is proven that the unique conditions present in microfluidic devices enable to unveil unprecedented synthetic pathways during the self-assembly of functional materials, favouring their controlled defect engineering and yielding new materials’ properties. Then, an advanced control on the structure and supramolecular chirality of self-assembled architectures is demonstrated by harnessing complex hydrodynamic fields with controlled mass transport. Additionally, microfluidic devices are confirmed to be an effective tool for controlling self-assembly process on surfaces. For example, controlled chemical gradients inside single-layer microfluidic devices are exploited to enable unprecedented spatial control while patterning compositional gradients of functional thin films. Finally, a method employing double-layer microfluidic devices is described to accomplish a regioselective localization of multiple functionalities on a single surface and their in-situ analytical characterization.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Controlled Self-Assembly Employing Microfluidic Tools: Pathway Selection in Materials Synthesis and Processing
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-04-08
ethz.size
156 p.
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::660 - Chemical engineering
en_US
ethz.code.ddc
DDC - DDC::5 - Science::540 - Chemistry
en_US
ethz.grant
Controlled Crystal Growth and Large Scale Integration of Functional Materials by Microfluidic Means (CoInFun)
en_US
ethz.grant
Microfluidic Crystal Factories (μ-CrysFact): a breakthrough approach for crystal engineering
en_US
ethz.identifier.diss
27262
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02516 - Inst. f. Chemie- und Bioingenieurwiss. / Inst. Chemical and Bioengineering::03914 - deMello, Andrew / deMello, Andrew
en_US
ethz.grant.agreementno
160174
ethz.grant.agreementno
677020
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-04-08T12:00:37Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-04-08T12:46:33Z
ethz.rosetta.lastUpdated
2024-02-02T13:28:39Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Controlled%20Self-Assembly%20Employing%20Microfluidic%20Tools:%20Pathway%20Selection%20in%20Materials%20Synthesis%20and%20Processing&rft.date=2021&rft.au=Sevim,%20Semih&rft.genre=unknown&rft.btitle=Controlled%20Self-Assembly%20Employing%20Microfluidic%20Tools:%20Pathway%20Selection%20in%20Materials%20Synthesis%20and%20Processing
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record