Show simple item record

dc.contributor.author
Minniti, Maria V.
dc.contributor.author
Grandia, Ruben
dc.contributor.author
Fäh, Kevin
dc.contributor.author
Farshidian, Farbod
dc.contributor.author
Hutter, Marco
dc.date.accessioned
2021-10-27T09:19:54Z
dc.date.available
2021-03-26T16:52:11Z
dc.date.available
2021-03-29T04:59:53Z
dc.date.available
2021-07-23T07:59:43Z
dc.date.available
2021-08-03T08:30:23Z
dc.date.available
2021-10-27T09:19:54Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7281-9077-8
en_US
dc.identifier.isbn
978-1-7281-9078-5
en_US
dc.identifier.other
10.1109/ICRA48506.2021.9562066
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/476635
dc.identifier.doi
10.3929/ethz-b-000476635
dc.description.abstract
Modern, torque-controlled service robots can reg- ulate contact forces when interacting with their environment. Model Predictive Control (MPC) is a powerful method to solve the underlying control problem, allowing to plan for whole- body motions while including different constraints imposed by the robot dynamics or its environment. However, an accurate model of the robot-environment is needed to achieve a satisfying closed-loop performance. Currently, this necessity undermines the performance and generality of MPC in manipulation tasks. In this work, we combine an MPC-based whole-body controller with two adaptive schemes, derived from online system identi- fication and adaptive control. As a result, we enable a general mobile manipulator to interact with unknown environments, without any need for re-tuning parameters or pre-modeling the interacting objects. In combination with the MPC controller, the two adaptive approaches are validated and benchmarked with a ball-balancing manipulator in door opening and object lifting tasks.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
RSL
en_US
dc.subject
dfab
en_US
dc.title
Model Predictive Robot-Environment Interaction Control for Mobile Manipulation Tasks
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-03-25
ethz.book.title
2021 IEEE International Conference on Robotics and Automation (ICRA)
ethz.pages.start
1651
en_US
ethz.pages.end
1657
en_US
ethz.size
7 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
en_US
ethz.event.location
Xi'an, China
ethz.event.date
May 30 – June 5, 2021
en_US
ethz.grant
subTerranean Haptic INvestiGator
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02284 - NFS Digitale Fabrikation / NCCR Digital Fabrication
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.tag
RSL
en_US
ethz.tag
dfab
en_US
ethz.grant.agreementno
780883
ethz.grant.agreementno
780883
ethz.grant.agreementno
780883
ethz.grant.agreementno
780883
ethz.grant.agreementno
780883
ethz.grant.agreementno
780883
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.relation.isCitedBy
10.3929/ethz-b-000636009
ethz.relation.cites
20.500.11850/388708
ethz.relation.cites
10.3929/ethz-b-000476411
ethz.relation.cites
10.3929/ethz-b-000357550
ethz.date.deposited
2021-03-26T16:52:18Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-07-23T07:59:51Z
ethz.rosetta.lastUpdated
2024-02-02T15:12:28Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Model%20Predictive%20Robot-Environment%20Interaction%20Control%20for%20Mobile%20Manipulation%20Tasks&rft.date=2021&rft.spage=1651&rft.epage=1657&rft.au=Minniti,%20Maria%20V.&Grandia,%20Ruben&F%C3%A4h,%20Kevin&Farshidian,%20Farbod&Hutter,%20Marco&rft.isbn=978-1-7281-9077-8&978-1-7281-9078-5&rft.genre=proceeding&rft_id=info:doi/10.1109/ICRA48506.2021.9562066&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record