The AI Driving Olympics at NeurIPS 2018
dc.contributor.author
Zilly, Julian
dc.contributor.author
Tani, Jacopo
dc.contributor.author
Considine, Breandan
dc.contributor.author
Mehta, Bhairav
dc.contributor.author
Daniele, Andrea F.
dc.contributor.author
Diaz, Manfred
dc.contributor.author
Bernasconi, Gianmarco
dc.contributor.author
Ruch, Claudio
dc.contributor.author
Hakenberg, Jan
dc.contributor.author
Golemo, Florian
dc.contributor.author
Bowser, A. Kirsten
dc.contributor.author
Walter, Matthew R.
dc.contributor.author
Hristov, Ruslan
dc.contributor.author
Mallya, Sunil
dc.contributor.author
Frazzoli, Emilio
dc.contributor.author
Censi, Andrea
dc.contributor.author
Paull, Liam
dc.contributor.editor
Escalera, Sergio
dc.contributor.editor
Herbrich, Ralf
dc.date.accessioned
2022-01-04T08:56:55Z
dc.date.available
2021-03-11T06:38:50Z
dc.date.available
2022-01-04T08:56:55Z
dc.date.issued
2020
dc.identifier.isbn
978-3-030-29135-8
en_US
dc.identifier.isbn
978-3-030-29134-1
en_US
dc.identifier.other
10.1007/978-3-030-29135-8_3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/473945
dc.identifier.doi
10.3929/ethz-b-000460647
dc.description.abstract
Despite recent breakthroughs, the ability of deep learning and reinforcement learning to outperform traditional approaches to control physically embodied robotic agents remains largely unproven. To help bridge this gap, we present the “AI Driving Olympics” (AI-DO), a competition with the objective of evaluating the state of the art in machine learning and artificial intelligence for mobile robotics. Based on the simple and well-specified autonomous driving and navigation environment called “Duckietown,” the AI-DO includes a series of tasks of increasing complexity—from simple lane-following to fleet management. For each task, we provide tools for competitors to use in the form of simulators, logs, code templates, baseline implementations and low-cost access to robotic hardware. We evaluate submissions in simulation online, on standardized hardware environments, and finally at the competition event. The first AI-DO, AI-DO 1, occurred at the Neural Information Processing Systems (NeurIPS) conference in December 2018. In this paper we will describe the AI-DO 1 including the motivation and design objections, the challenges, the provided infrastructure, an overview of the approaches of the top submissions, and a frank assessment of what worked well as well as what needs improvement. The results of AI-DO 1 highlight the need for better benchmarks, which are lacking in robotics, as well as improved mechanisms to bridge the gap between simulation and reality. © Springer Nature Switzerland AG 2020.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
The AI Driving Olympics at NeurIPS 2018
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-11-30
ethz.book.title
The NeurIPS '18 Competition. From Machine Learning to Intelligent Conversations
en_US
ethz.journal.title
The Springer Series on Challenges in Machine Learning
ethz.pages.start
37
en_US
ethz.pages.end
68
en_US
ethz.size
32 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
32nd Conference on Neural Information Processing Systems (NeurIPS 2018)
en_US
ethz.event.location
Montreal, Canada
en_US
ethz.event.date
December 2–8, 2018
en_US
ethz.publication.place
Cham
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09574 - Frazzoli, Emilio / Frazzoli, Emilio
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09574 - Frazzoli, Emilio / Frazzoli, Emilio
ethz.date.deposited
2019-12-29T13:30:23Z
ethz.source
FORM
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.date.embargoend
2022-01-01
ethz.rosetta.installDate
2021-03-11T06:39:02Z
ethz.rosetta.lastUpdated
2022-03-29T17:12:29Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/387211
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/460647
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/460669
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/466524
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=The%20AI%20Driving%20Olympics%20at%20NeurIPS%202018&rft.jtitle=The%20Springer%20Series%20on%20Challenges%20in%20Machine%20Learning&rft.date=2020&rft.spage=37&rft.epage=68&rft.au=Zilly,%20Julian&Tani,%20Jacopo&Considine,%20Breandan&Mehta,%20Bhairav&Daniele,%20Andrea%20F.&rft.isbn=978-3-030-29135-8&978-3-030-29134-1&rft.genre=proceeding&rft_id=info:doi/10.1007/978-3-030-29135-8_3&rft.btitle=The%20NeurIPS%20'18%20Competition.%20From%20Machine%20Learning%20to%20Intelligent%20Conversations
Files in this item
Publication type
-
Conference Paper [35471]