Show simple item record

dc.contributor.author
Tebbenjohanns, Felix
dc.contributor.supervisor
Novotny, Lukas
dc.contributor.supervisor
Chu, Yiwen
dc.contributor.supervisor
Kiesel, Nikolai
dc.date.accessioned
2021-01-21T14:27:42Z
dc.date.available
2021-01-21T14:09:55Z
dc.date.available
2021-01-21T14:27:42Z
dc.date.issued
2020
dc.identifier.uri
http://hdl.handle.net/20.500.11850/464510
dc.identifier.doi
10.3929/ethz-b-000464510
dc.description.abstract
About a decade ago, optically levitated nanoparticles have been proposed for macroscopic tests of quantum mechanics. For such tests, the thermal motion of the particle’s center of mass is required to be close to its ground state of energy. Ever since these proposals, research groups around the world try to achieve ground-state cooling of optically levitated glass particles. In this dissertation, we cool the center-of-mass motion of a nanoparticle in an optical trap. Based on the position measurement of the particle, we apply a damping force in proportion to the particle’s speed, which leads to a cooling effect. We find that the cooling performance of our cold damping scheme is limited by the measurement imprecision. We analyze our detection principle theoretically and find an ideal detection scheme whose imprecision is at the fundamental noise level dictated by quantum mechanics. Such a Heisenberg-limited detection would, in principle, allow for ground-state feedback cooling. With these insights applied to our experiment, we cool the motion of our particle to an average of four quanta. Moreover, we resolve an asymmetry between the Stokes and anti-Stokes scattered light from the particle. This quantum effect allows us to calibrate the system to the ground state energy. Our work advances the research field of levitated optomechanics toward quantum control and therefore toward macroscopic tests of quantum mechanics.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
optomechanics
en_US
dc.subject
optical tweezers
en_US
dc.subject
levitodynamics
en_US
dc.title
Linear feedback cooling of a levitated nanoparticle in free space
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-01-21
ethz.size
134 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::530 - Physics
en_US
ethz.grant
Quantum Mesoscopics with Vacuum Trapped Nanoparticles
en_US
ethz.grant
Non-equilibrium Fluctuations of Vacuum Trapped Nanoparticles
en_US
ethz.identifier.diss
26839
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::03944 - Novotny, Lukas / Novotny, Lukas
en_US
ethz.grant.agreementno
338763
ethz.grant.agreementno
169319
ethz.grant.fundername
EC
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
FP7
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-01-21T14:10:03Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-02-15T23:28:26Z
ethz.rosetta.lastUpdated
2022-03-29T04:55:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Linear%20feedback%20cooling%20of%20a%20levitated%20nanoparticle%20in%20free%20space&rft.date=2020&rft.au=Tebbenjohanns,%20Felix&rft.genre=unknown&rft.btitle=Linear%20feedback%20cooling%20of%20a%20levitated%20nanoparticle%20in%20free%20space
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record