Show simple item record

dc.contributor.author
Mylonas, Charilaos
dc.contributor.author
Chatzi, Eleni
dc.date.accessioned
2020-12-17T06:06:56Z
dc.date.available
2020-12-16T13:41:39Z
dc.date.available
2020-12-17T06:06:56Z
dc.date.issued
2020-02
dc.identifier.uri
http://hdl.handle.net/20.500.11850/456700
dc.identifier.doi
10.3929/ethz-b-000456700
dc.description.abstract
Fatigue experiments present with large scatter even for identical specimens tested under controlled laboratory conditions. It has long been known that variations in the mechanical behavior of fatigued metals occur, such as hardening or softening and variations on the shape of hysteresis curves. In order to incorporate measurements in the fatigue life prediction of concrete anchors, a fully data-driven model, using load-displacement and acceleration data, was trained to predict directly the remaining cycles to failure for anchors embedded in cracked concrete loaded in variable amplitude fatigue.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich, Department of Civil Environmental and Geomatic Engineering
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Deep Learning
en_US
dc.subject
domain adversarial training
en_US
dc.subject
Fatigue prediction
en_US
dc.subject
Convolutional neural network (CNN)
en_US
dc.subject
DenseNet
en_US
dc.title
Deep CNNs and Adversarial Regularization for Fatigue Damage Failure Prediction of Concrete Anchors
en_US
dc.type
Conference Poster
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.size
1 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::624 - Civil engineering
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.event
3rd general assembly of the Swiss Community for Computational Methods in Applied Sciences (SWICCOMAS 2020)
en_US
ethz.event.location
Zurich, Switzerland
en_US
ethz.event.date
February 7, 2020
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03890 - Chatzi, Eleni / Chatzi, Eleni
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03890 - Chatzi, Eleni / Chatzi, Eleni
en_US
ethz.tag
Deep Learning
en_US
ethz.tag
domain adversarial training
en_US
ethz.tag
fatigue experiments
en_US
ethz.date.deposited
2020-12-16T13:41:47Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-12-17T06:07:13Z
ethz.rosetta.lastUpdated
2021-02-15T22:34:02Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20CNNs%20and%20Adversarial%20Regularization%20for%20Fatigue%20Damage%20Failure%20Prediction%20of%20Concrete%20Anchors&rft.date=2020-02&rft.au=Mylonas,%20Charilaos&Chatzi,%20Eleni&rft.genre=unknown&rft.btitle=Deep%20CNNs%20and%20Adversarial%20Regularization%20for%20Fatigue%20Damage%20Failure%20Prediction%20of%20Concrete%20Anchors
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record