Show simple item record

dc.contributor.author
Singh, Gagandeep
dc.contributor.author
Diamantopoulos, Dionysios
dc.contributor.author
Hagleitner, Christoph
dc.contributor.author
Gómez Luna, Juan
dc.contributor.author
Stuijk, Sander
dc.contributor.author
Mutlu, Onur
dc.contributor.author
Corporaal, Henk
dc.date.accessioned
2020-11-16T09:21:28Z
dc.date.available
2020-11-13T18:50:05Z
dc.date.available
2020-11-16T09:21:28Z
dc.date.issued
2020
dc.identifier.isbn
978-1-7281-9902-3
en_US
dc.identifier.isbn
978-1-7281-9903-0
en_US
dc.identifier.other
10.1109/FPL50879.2020.00014
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/451343
dc.description.abstract
Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather prediction simulations, state-of-the-art CPU and GPU implementations suffer from limited performance and high energy consumption. These implementations are dominated by complex irregular memory access patterns and low arithmetic intensity that pose fundamental challenges to acceleration. To overcome these challenges, we propose and evaluate the use of near-memory acceleration using a reconfigurable fabric with high-bandwidth memory (HBM). We focus on compound stencils that are fundamental kernels in weather prediction models. By using high-level synthesis techniques, we develop NERO, an FPGA+HBM-based accelerator connected through IBM CAPI2 (Coherent Accelerator Processor Interface) to an IBM POWER9 host system. Our experimental results show that NERO outperforms a 16-core POWER9 system by 4.2x and 8.3x when running two different compound stencil kernels. NERO reduces the energy consumption by 22x and 29x for the same two kernels over the POWER9 system with an energy efficiency of 1.5 GFLOPS/Watt and 17.3 GFLOPS/Watt. We conclude that employing near-memory acceleration solutions for weather prediction modeling is promising as a means to achieve both high performance and high energy efficiency.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
NERO: A near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling
en_US
dc.type
Conference Paper
dc.date.published
2020-10-13
ethz.book.title
2020 30th International Conference on Field-Programmable Logic and Applications (FPL)
en_US
ethz.pages.start
9
en_US
ethz.pages.end
17
en_US
ethz.event
30th International Conference on Field-Programmable Logic and Applications (FPL 2020) (virtual)
en_US
ethz.event.location
Gothenburg, Sweden
en_US
ethz.event.date
August 31 - September 4, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
ethz.grant
Open Transprecision Computing
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::09483 - Mutlu, Onur / Mutlu, Onur
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::09483 - Mutlu, Onur / Mutlu, Onur
ethz.grant.agreementno
732631
ethz.grant.agreementno
732631
ethz.grant.agreementno
732631
ethz.grant.agreementno
732631
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.date.deposited
2020-11-13T18:50:22Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-11-16T09:21:38Z
ethz.rosetta.lastUpdated
2022-03-29T04:02:10Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=NERO:%20A%20near%20High-Bandwidth%20Memory%20Stencil%20Accelerator%20for%20Weather%20Prediction%20Modeling&rft.date=2020&rft.spage=9&rft.epage=17&rft.au=Singh,%20Gagandeep&Diamantopoulos,%20Dionysios&Hagleitner,%20Christoph&G%C3%B3mez%20Luna,%20Juan&Stuijk,%20Sander&rft.isbn=978-1-7281-9902-3&978-1-7281-9903-0&rft.genre=proceeding&rft_id=info:doi/10.1109/FPL50879.2020.00014&rft.btitle=2020%2030th%20International%20Conference%20on%20Field-Programmable%20Logic%20and%20Applications%20(FPL)
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record