Deep learning in high dimension: ReLU network Expression Rates for Bayesian PDE inversion
dc.contributor.author
Opschoor, Joost A.A.
dc.contributor.author
Schwab, Christoph
dc.contributor.author
Zech, Jakob
dc.date.accessioned
2020-11-03T07:28:37Z
dc.date.available
2020-10-22T08:28:23Z
dc.date.available
2020-10-23T11:24:16Z
dc.date.available
2020-11-03T07:28:37Z
dc.date.issued
2020-07
dc.identifier.uri
http://hdl.handle.net/20.500.11850/447152
dc.description.abstract
We establish dimension independent expression rates by deep ReLU networks for so-called (b,ε,X)-holomorphic functions. These are mappings from [−1,1]N→X, with X being a Banach space, that admit analytic extensions to certain polyellipses in each of the input variables. The significance of this function class has been established in previous works, where it was shown that functions of this type occur widely in uncertainty quantification for partial differential equations with uncertain inputs from function spaces. Proofs for establishing the expression rate bounds are constructive, and are based on multilevel polynomial chaos expansions of the target function. The (b,ε,X)-holomorphy facilitates estimation of the coefficients in the polynomial chaos expansions. We apply the results to Bayesian inverse problems for partial differential equations with distributed, uncertain inputs from Banach spaces, resulting in expression rate bounds on the Bayesian posterior densities by deep ReLU neural networks. The expression rates for these countably-parametric maps are free from the curse of dimensionality. Certain types of Bayesian posterior concentration, which generically arise in large data or small noise asymptotics (e.g. [B. T. Knapik and A. W. van der Vaart and J. H. van Zanten, 2011]) can be emulated in a noise-robust fashion by the ability of ReLU DNNs to express the geometry of possibly high-dimensional posterior densities at MAP points.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.subject
Bayesian Inverse Problems
en_US
dc.subject
Generalized polynomial chaos
en_US
dc.subject
Deep networks
en_US
dc.subject
Uncertainty Quantification
en_US
dc.title
Deep learning in high dimension: ReLU network Expression Rates for Bayesian PDE inversion
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2020-47
en_US
ethz.size
50 p.
en_US
ethz.grant
Numerical Analysis of PDEs with High-Dimensional Input Data
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=920
ethz.grant.agreementno
159940
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2020-10-22T08:28:34Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=920
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-10-23T11:24:31Z
ethz.rosetta.lastUpdated
2022-03-29T03:57:01Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20learning%20in%20high%20dimension:%20ReLU%20network%20Expression%20Rates%20for%20Bayesian%20PDE%20inversion&rft.jtitle=SAM%20Research%20Report&rft.date=2020-07&rft.volume=2020-47&rft.au=Opschoor,%20Joost%20A.A.&Schwab,%20Christoph&Zech,%20Jakob&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [6904]