Show simple item record

dc.contributor.author
Mohiyaddin, Fahd A.
dc.contributor.author
Simion, George
dc.contributor.author
Dumoulin Stuyck, Nard I.
dc.contributor.author
Li, Roy
dc.contributor.author
Ciubotaru, Florin
dc.contributor.author
Eneman, Geert
dc.contributor.author
Bufler, Fabian M.
dc.contributor.author
Kubicek, Stefan
dc.contributor.author
Jussot, Julien
dc.contributor.author
Chan, Boon Teik
dc.contributor.author
Ivanov, Tsvetan
dc.contributor.author
Spessot, Alessio
dc.contributor.author
Matagne, Philippe
dc.contributor.author
Lee, James
dc.contributor.author
Govoreanu, Bogdan
dc.contributor.author
Radu, Iuliana
dc.date.accessioned
2020-09-04T12:29:38Z
dc.date.available
2020-03-16T08:18:18Z
dc.date.available
2020-03-16T11:06:16Z
dc.date.available
2020-09-04T12:29:38Z
dc.date.issued
2020
dc.identifier.isbn
978-1-7281-4032-2
en_US
dc.identifier.isbn
978-1-7281-4033-9
en_US
dc.identifier.other
10.1109/IEDM19573.2019.8993541
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/405040
dc.description.abstract
In this paper, we combine multiphysics simulation methods to assemble a comprehensive design methodology for silicon qubit devices. Key device parameters are summarized by modeling device electrostatics, stress, micro-magnetics, band- structure and spin dynamics. Based on the models, we infer that highly confined single electron qubits in quantum dots, with large orbital energy separations, can be induced in Si-MOS structures with thin (t OX <; 20 nm) gate oxides. We further advocate that poly-silicon gate material, in conjunction with small barrier gate widths (b <; 30 nm), will reduce the impact of strain on qubit readout and two-qubit gate-operations. We optimized a micromagnet design to provide fast single-qubit gate times (~100 ns), with minimal dephasing field gradients. Finally, we estimate that the exchange coupling between qubits is tunable by over 4 orders of magnitude, for two-qubit operations. © 2019 IEEE.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
Multiphysics Simulation Design of Silicon Quantum Dot Qubit Devices
en_US
dc.type
Conference Paper
dc.date.published
2020-02-13
ethz.book.title
2019 IEEE International Electron Devices Meeting (IEDM)
en_US
ethz.pages.start
39.5.1
en_US
ethz.pages.end
39.5.4
en_US
ethz.event
IEEE International Electron Devices Meeting (IEDM 2019)
en_US
ethz.event.location
San Francisco, CA, USA
en_US
ethz.event.date
December 7-11, 2019
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-03-16T08:18:25Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-03-16T11:06:29Z
ethz.rosetta.lastUpdated
2021-02-15T16:57:15Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.atitle=Multiphysics%20Simulation%20Design%20of%20Silicon%20Quantum%20Dot%20Qubit%20Devices&amp;rft.date=2020&amp;rft.spage=39.5.1&amp;rft.epage=39.5.4&amp;rft.au=Mohiyaddin,%20Fahd%20A.&amp;Simion,%20George&amp;Dumoulin%20Stuyck,%20Nard%20I.&amp;Li,%20Roy&amp;Ciubotaru,%20Florin&amp;rft.isbn=978-1-7281-4032-2&amp;978-1-7281-4033-9&amp;rft.genre=proceeding&amp;rft_id=info:doi/10.1109/IEDM19573.2019.8993541&amp;rft.btitle=2019%20IEEE%20International%20Electron%20Devices%20Meeting%20(IEDM)
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record