Lowering the Latency of Data Processing Pipelines Through FPGA based Hardware Acceleration
dc.contributor.author
Owaida, Muhsen
dc.contributor.author
Alonso, Gustavo
dc.contributor.author
Fogliarini, Laura
dc.contributor.author
Hock-Koon, Anthony
dc.contributor.author
Melet, Pierre-Etienne
dc.date.accessioned
2020-02-04T09:40:34Z
dc.date.available
2020-01-07T13:36:09Z
dc.date.available
2020-02-04T09:40:34Z
dc.date.issued
2019-09
dc.identifier.issn
2150-8097
dc.identifier.other
10.14778/3357377.3357383
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/388204
dc.identifier.doi
10.3929/ethz-b-000388204
dc.description.abstract
Web search engines often involve a complex pipeline of processing stages including computing, scoring, and ranking potential answers plus returning the sorted results. The latency of such pipelines can be improved by minimizing data movement, making stages faster, and merging stages. The throughput is determined by the stage with the smallest capacity and it can be improved by allocating enough parallel resources to each stage. In this paper we explore the possibility of employing hardware acceleration (an FPGA) as a way to improve the overall performance when computing answers to search queries. With a real use case as a baseline and motivation, we focus on accelerating the scoring function implemented as a decision tree ensemble, a common approach to scoring and classification in search systems. Our solution uses a novel decision tree ensemble implementation on an FPGA to: 1) increase the number of entries that can be scored per unit of time, and 2) provide a compact implementation that can be combined with previous stages. The resulting system, tested in Amazon F1 instances, significantly improves the quality of the search results and improves performance by two orders of magnitude over the existing CPU based solution.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Association for Computing Machinery
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.title
Lowering the Latency of Data Processing Pipelines Through FPGA based Hardware Acceleration
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
ethz.journal.title
Proceedings of the VLDB Endowment
ethz.journal.volume
13
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Proc. VLDB Endow.
ethz.pages.start
71
en_US
ethz.pages.end
85
en_US
ethz.size
15 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
46th International Conference on Very Large Data Bases (VLDB 2020)
en_US
ethz.event.location
Tokyo, Japan
en_US
ethz.event.date
August 31 - September 4, 2020
en_US
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02663 - Institut für Computing Platforms / Institute for Computing Platforms::03506 - Alonso, Gustavo / Alonso, Gustavo
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02663 - Institut für Computing Platforms / Institute for Computing Platforms::03506 - Alonso, Gustavo / Alonso, Gustavo
en_US
ethz.date.deposited
2020-01-07T13:36:19Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-02-04T09:40:44Z
ethz.rosetta.lastUpdated
2023-02-06T18:16:03Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Lowering%20the%20Latency%20of%20Data%20Processing%20Pipelines%20Through%20FPGA%20based%20Hardware%20Acceleration&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.date=2019-09&rft.volume=13&rft.issue=1&rft.spage=71&rft.epage=85&rft.issn=2150-8097&rft.au=Owaida,%20Muhsen&Alonso,%20Gustavo&Fogliarini,%20Laura&Hock-Koon,%20Anthony&Melet,%20Pierre-Etienne&rft.genre=proceeding&rft_id=info:doi/10.14778/3357377.3357383&
Files in this item
Publication type
-
Conference Paper [35601]