Virtual and experimental hybrid thermoforming of GFRP and aluminum
dc.contributor.author
Grubenmann, Michael
dc.contributor.author
Heingärtner, Jörg
dc.contributor.author
Rieb, Arthur
dc.contributor.author
Hora, Pavel
dc.contributor.editor
Mouritz, Adrian
dc.contributor.editor
Wang, Chun
dc.contributor.editor
Fox, Bronwyn
dc.date.accessioned
2021-09-08T13:52:11Z
dc.date.available
2019-12-18T10:28:30Z
dc.date.available
2019-12-18T13:07:29Z
dc.date.available
2019-12-18T14:24:37Z
dc.date.available
2020-02-13T08:57:24Z
dc.date.available
2021-09-08T13:49:53Z
dc.date.available
2021-09-08T13:52:11Z
dc.date.issued
2019-08
dc.identifier.uri
http://hdl.handle.net/20.500.11850/386401
dc.identifier.doi
10.3929/ethz-b-000386401
dc.description.abstract
In this work, a hybrid thermoforming process consisting of a glass fibre-reinforced thermoplastic and aluminum outer layers is investigated. To guarantee interlaminar adhesion of the two materials, a multi-layered thermoplastic adhesive film is used. Both materials are thermo-mechanically tested to calibrate the corresponding material model. In-plane tensile tests and bias extension tests, as well as out-of-plane cantilever tests, are used to characterize the behaviour of the organosheet. For the characterization of the aluminum alloy AA5182, uniaxial tensile tests at various temperatures and strain rates in relation to rolling direction are performed. A flat tool pressing process is chosen to show the flexural behaviour of the hybrid component in a three-point bending test, whereas lap shear tests are used to investigate the interlaminar shear strength carried by the adhesive film. In both validation experiments, it is shown that
increased temperature and low applied pressure leads to increased flexural strength and interlaminar shear strength. A V-shaped two-dimensional geometry is used to apply this hybrid approach to a deep-drawing process. After the forming process, microscopic pictures of the cross-sections are manufactured to investigate the consolidation of the GFRP layer and evaluate air void formation. Being independent of the consolidation pressure, heating the GFRP layer up to 10 °C above melting temperature of the matrix material causes high void fraction and low fraction of bonding area between the GFRP and aluminum layer. Applying higher temperatures up to 280 °C leads to continuous bonding contact of all layers and only few and small void formations. Based on two simple geometries, a feasible hybrid thermoforming process of GFRP and aluminum is demonstrated.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
RMIT University
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Finite element analysis
en_US
dc.subject
Thermoforming
en_US
dc.subject
FML
en_US
dc.subject
Process modelling
en_US
dc.title
Virtual and experimental hybrid thermoforming of GFRP and aluminum
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.book.title
Proceedings of the 2019 International Conference on Composite Materials
ethz.pages.start
367
en_US
ethz.size
8 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
22nd International Conference on Composite Materials (ICCM22 2019)
en_US
ethz.event.location
Melbourne, Australia
en_US
ethz.event.date
August 11-16, 2019
en_US
ethz.notes
Conference lecture held on August 16, 2019
en_US
ethz.publication.place
Melbourne
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02622 - Institut für virtuelle Produktion / Institute of Virtual Manufacturing::03685 - Hora, Pavel (emeritus) / Hora, Pavel (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02622 - Institut für virtuelle Produktion / Institute of Virtual Manufacturing::03685 - Hora, Pavel (emeritus) / Hora, Pavel (emeritus)
en_US
ethz.relation.isPartOf
http://iccm-central.org/Proceedings/ICCM22proceedings/
ethz.date.deposited
2019-12-18T10:28:39Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-02-13T08:57:36Z
ethz.rosetta.lastUpdated
2024-02-02T14:39:55Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Virtual%20and%20experimental%20hybrid%20thermoforming%20of%20GFRP%20and%20aluminum&rft.date=2019-08&rft.spage=367&rft.au=Grubenmann,%20Michael&Heing%C3%A4rtner,%20J%C3%B6rg&Rieb,%20Arthur&Hora,%20Pavel&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%202019%20International%20Conference%20on%20Composite%20Materials
Files in this item
Publication type
-
Conference Paper [35568]