Bayesian Optimisation for Fast and Safe Parameter Tuning of SwissFEL
dc.contributor.author
Kirschner, Johannes
dc.contributor.author
Nonnenmacher, Manuel
dc.contributor.author
Mutný, Mojmír
dc.contributor.author
Krause, Andreas
dc.contributor.author
Hiller, Nicole
dc.contributor.author
Ischebeck, Rasmus
dc.contributor.author
Adelmann, Andreas
dc.contributor.editor
Decking, Winfried
dc.contributor.editor
Sinn, Harald
dc.contributor.editor
Geloni, Gianluca
dc.contributor.editor
Schreiber, Siegfried
dc.contributor.editor
Marx, Michaela
dc.contributor.editor
Schaa, Volker R.W.
dc.date.accessioned
2019-12-17T07:59:07Z
dc.date.available
2019-12-17T07:08:10Z
dc.date.available
2019-12-17T07:59:07Z
dc.date.issued
2019-11
dc.identifier.isbn
978-3-95450-210-3
en_US
dc.identifier.other
10.18429/JACoW-FEL2019-THP061
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/385955
dc.identifier.doi
10.3929/ethz-b-000385955
dc.description.abstract
Parameter tuning is a notoriously time-consuming task in accelerator facilities. As tool for global optimization with noisy evaluations, Bayesian optimization was recently shown to outperform alternative methods. By learning a model of the underlying function using all available data, the next evaluation can be chosen carefully to find the optimum with as few steps as possible and without violating any safety constraints. However, the per-step computation time increases significantly with the number of parameters and the generality of the approach can lead to slow convergence on functions that are easier to optimize. To overcome these limitations, we divide the global problem into sequential subproblems that can be solved efficiently using safe Bayesian optimization. This allows us to trade off local and global convergence and to adapt to additional structure in the objective function. Further, we provide slice-plots of the function as user feedback during the optimization. We showcase how we use our algorithm to tune up the FEL output of SwissFEL with up to 40 parameters simultaneously, and reach convergence within reasonable tuning times in the order of 30 minutes (< 2000 steps).
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
JACoW Publishing
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.title
Bayesian Optimisation for Fast and Safe Parameter Tuning of SwissFEL
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 3.0 Unported
ethz.book.title
FEL2019, Proceedings of the 39th International Free-Electron Laser Conference
en_US
ethz.pages.start
707
en_US
ethz.pages.end
710
en_US
ethz.size
4 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
39th International Free Electron Laser Conference (FEL 2019)
en_US
ethz.event.location
Hamburg, Germany
en_US
ethz.event.date
August 26-30, 2019
en_US
ethz.notes
Conference lecture held on August 29, 2019
en_US
ethz.grant
Explore-exploit with Gaussian Processes under Complex Constraints
en_US
ethz.grant
Scaling Up by Scaling Down: Big ML via Small Coresets
en_US
ethz.grant
Reliable Data-Driven Decision Making in Cyber-Physical Systems
en_US
ethz.publication.place
s.l.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.grant.agreementno
159557
ethz.grant.agreementno
167212
ethz.grant.agreementno
815943
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
NFP 75: Gesuch
ethz.grant.program
Projekte MINT
ethz.date.deposited
2019-12-17T07:08:20Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-12-17T07:59:23Z
ethz.rosetta.lastUpdated
2023-02-06T17:58:29Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Bayesian%20Optimisation%20for%20Fast%20and%20Safe%20Parameter%20Tuning%20of%20SwissFEL&rft.date=2019-11&rft.spage=707&rft.epage=710&rft.au=Kirschner,%20Johannes&Nonnenmacher,%20Manuel&Mutn%C3%BD,%20Mojm%C3%ADr&Krause,%20Andreas&Hiller,%20Nicole&rft.isbn=978-3-95450-210-3&rft.genre=proceeding&rft_id=info:doi/10.18429/JACoW-FEL2019-THP061&rft.btitle=FEL2019,%20Proceedings%20of%20the%2039th%20International%20Free-Electron%20Laser%20Conference
Files in this item
Publication type
-
Conference Paper [35605]