Show simple item record

dc.contributor.author
Dinur, Irit
dc.contributor.author
Golubev, Konstantin
dc.date.accessioned
2019-10-14T07:19:19Z
dc.date.available
2019-10-12T04:22:11Z
dc.date.available
2019-10-14T07:19:19Z
dc.date.issued
2019
dc.identifier.issn
1868-8969
dc.identifier.other
10.4230/LIPIcs.APPROX-RANDOM.2019.40
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/370195
dc.identifier.doi
10.3929/ethz-b-000370195
dc.description.abstract
A function f:[n_1] x ... x[n_d]->F_2 is a direct sum if it is of the form f (a_1,...,a_d) = f_1(a_1) oplus ... oplus f_d (a_d), for some d functions f_i:[n_i]->F_2 for all i=1,..., d, and where n_1,...,n_d in N. We present a 4-query test which distinguishes between direct sums and functions that are far from them. The test relies on the BLR linearity test (Blum, Luby, Rubinfeld, 1993) and on the direct product test constructed by Dinur & Steurer (2014). We also present a different test, which queries the function (d+1) times, but is easier to analyze. In multiplicative +/- 1 notation, this reads as follows. A d-dimensional tensor with +/- 1 entries is called a tensor product if it is a tensor product of d vectors with +/- 1 entries, or equivalently, if it is of rank 1. The presented tests can be read as tests for distinguishing between tensor products and tensors that are far from being tensor products.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject
Property testing
en_US
dc.subject
Direct sum
en_US
dc.subject
Tensor product
en_US
dc.title
Direct Sum Testing: The General Case
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 3.0 Unported
ethz.journal.title
Leibniz International Proceedings in Informatics (LIPIcs)
ethz.journal.volume
145
en_US
ethz.journal.abbreviated
Leibniz Int. Proc. Inform.
ethz.pages.start
40
en_US
ethz.size
11 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
International Conference on Approximation Algorithms for Combinatorial Optimization Problems and International Conference on Randomization and Computation (APPROX/RANDOM 2019)
en_US
ethz.event.location
Cambridge, MA, USA
en_US
ethz.event.date
September 20-22, 2019
en_US
ethz.identifier.scopus
ethz.publication.place
Dagstuhl
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08802 - Iozzi, Alessandra (Tit.-Prof.)
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08802 - Iozzi, Alessandra (Tit.-Prof.)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08802 - Iozzi, Alessandra (Tit.-Prof.)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::08802 - Iozzi, Alessandra (Tit.-Prof.)
ethz.date.deposited
2019-10-12T04:22:19Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-10-14T07:19:32Z
ethz.rosetta.lastUpdated
2024-02-02T09:34:13Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Direct%20Sum%20Testing:%20The%20General%20Case&rft.jtitle=Leibniz%20International%20Proceedings%20in%20Informatics%20(LIPIcs)&rft.date=2019&rft.volume=145&rft.spage=40&rft.issn=1868-8969&rft.au=Dinur,%20Irit&Golubev,%20Konstantin&rft.genre=proceeding&rft_id=info:doi/10.4230/LIPIcs.APPROX-RANDOM.2019.40&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record