Obstacle-aware Adaptive Informative Path Planning for UAV-based Target Search
dc.contributor.author
Meera, Ajith A.
dc.contributor.author
Popović, Marija
dc.contributor.author
Millane, Alexander
dc.contributor.author
Siegwart, Roland
dc.date.accessioned
2019-12-11T10:26:10Z
dc.date.available
2019-01-29T10:42:31Z
dc.date.available
2019-01-29T11:06:12Z
dc.date.available
2019-05-29T08:43:27Z
dc.date.available
2019-06-24T14:31:17Z
dc.date.available
2019-06-24T14:50:34Z
dc.date.available
2019-08-19T14:45:53Z
dc.date.available
2019-12-11T10:26:10Z
dc.date.issued
2019
dc.identifier.isbn
978-1-5386-6027-0
en_US
dc.identifier.isbn
978-1-5386-6026-3
en_US
dc.identifier.isbn
978-1-5386-8176-3
en_US
dc.identifier.other
10.1109/ICRA.2019.8794345
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/320761
dc.identifier.doi
10.3929/ethz-b-000320761
dc.description.abstract
The autonomous target search problem for Unmanned Aerial Vehicles (UAV) in urban environments requires solving a 3D path planning problem for maximal information gain, given a restricted flight duration. In this paper, we propose a general, Obstacle-aware Adaptive Informative Path Planning (OA-IPP) algorithm for the target search problem which uses active perception. The main contribution is the layered optimization approach that balances the exploration-exploitation trade-off through a Bayesian Optimization (BO) framework and simultaneously optimizes the 3D path using a standard optimizer. The planner simultaneously trades off between information gain, field coverage, altitude-dependent sensor performance, collision avoidance, target re-observation and Field of View (FoV) while planning. Through experiments in a simulated environment, we show that the proposed approach outperforms a pure exploratory IPP planner, a coverage planner, and a random sampling planner by demonstrating the fastest decrease in error related to target position estimates. Furthermore, we demonstrate the planner in simulations of varying complexity and obstacle density, demonstrating its applicability to a range of environments. Finally, we combine the proposed planning approach with an existing human detection pipeline, and demonstrate its efficacy in locating human victims in a realistic simulated environment.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Obstacle-aware Adaptive Informative Path Planning for UAV-based Target Search
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-08-12
ethz.book.title
2019 International Conference on Robotics and Automation (ICRA)
en_US
ethz.pages.start
718
en_US
ethz.pages.end
724
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
International Conference on Robotics and Automation (ICRA 2019)
en_US
ethz.event.location
Montreal, Canada
en_US
ethz.event.date
May 20-24, 2019
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
ethz.tag
contributed paper at a conference
en_US
ethz.date.deposited
2019-01-29T10:42:33Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-05-29T08:43:43Z
ethz.rosetta.lastUpdated
2021-02-15T07:02:46Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Obstacle-aware%20Adaptive%20Informative%20Path%20Planning%20for%20UAV-based%20Target%20Search&rft.date=2019&rft.spage=718&rft.epage=724&rft.au=Meera,%20Ajith%20A.&Popovi%C4%87,%20Marija&Millane,%20Alexander&Siegwart,%20Roland&rft.isbn=978-1-5386-6027-0&978-1-5386-6026-3&978-1-5386-8176-3&rft.genre=proceeding&rft_id=info:doi/10.1109/ICRA.2019.8794345&rft.btitle=2019%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
Dateien zu diesem Eintrag
Publikationstyp
-
Conference Paper [35666]