Learning-Based Model Predictive Control
dc.contributor.author
Ho, Kin Wa
dc.contributor.supervisor
Soloperto, Raffaele
dc.contributor.supervisor
Tsiamis, Anastasios
dc.contributor.supervisor
Lygeros, John
dc.date.accessioned
2024-11-12T10:56:31Z
dc.date.available
2024-11-12T08:19:47Z
dc.date.available
2024-11-12T10:56:31Z
dc.date.issued
2024-06-17
dc.identifier.uri
http://hdl.handle.net/20.500.11850/704865
dc.identifier.doi
10.3929/ethz-b-000704865
dc.description.abstract
In this thesis, we investigate the convergence behavior of the dual adaptive model predictive controller (MPC). The dual adaptive MPC is a compelling area of research due to its ability to actively explore unknown parameters within the system. The current convergence result using Lyapunov stability analysis depends on two practical challenges: the difference between the current and the previous estimated parameter and the covariance matrix derived from the recursive least squares (RLS) estimation. Our research aims to achieve convergence independent of these factors. By applying logarithmic upper bounds to both the average squared Euclidean distance between consecutive parameter estimates and the terms in the average Lyapunov decrease function, we establish the average convergence of the dual adaptive MPC. We validate our results with detailed mathematical proofs and simulations, which also illustrate limitations. We contribute valuable insights into the convergence behavior of the dual adaptive MPC and provide some assurance of its operational reliability in practical applications.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Learning-Based Model Predictive Control
en_US
dc.type
Master Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
44 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
en_US
ethz.date.deposited
2024-11-12T08:19:48Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-11-12T10:56:32Z
ethz.rosetta.lastUpdated
2024-11-12T10:56:32Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Learning-Based%20Model%20Predictive%20Control&rft.date=2024-06-17&rft.au=Ho,%20Kin%20Wa&rft.genre=unknown&rft.btitle=Learning-Based%20Model%20Predictive%20Control
Files in this item
Publication type
-
Master Thesis [2112]