Show simple item record

dc.contributor.author
Aidukas, Tomas
dc.contributor.author
Phillips, Nicholas W.
dc.contributor.author
Diaz, Ana
dc.contributor.author
Poghosyan, Emiliya
dc.contributor.author
Müller, Elisabeth
dc.contributor.author
Levi, Anthony F.J.
dc.contributor.author
Aeppli, Gabriel
dc.contributor.author
Guizar-Sicairos, Manuel
dc.contributor.author
Holler, Mirko
dc.date.accessioned
2024-08-13T07:58:27Z
dc.date.available
2024-08-09T06:35:59Z
dc.date.available
2024-08-13T07:58:27Z
dc.date.issued
2024-08-01
dc.identifier.issn
0028-0836
dc.identifier.issn
1476-4687
dc.identifier.other
10.1038/s41586-024-07615-6
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/688090
dc.description.abstract
Advances in science, medicine and engineering rely on breakthroughs in imaging, particularly for obtaining multiscale, three-dimensional information from functional systems such as integrated circuits or mammalian brains. Achieving this goal often requires combining electron- and photon-based approaches. Whereas electron microscopy provides nanometre resolution through serial, destructive imaging of surface layers, ptychographic X-ray computed tomography offers non-destructive imaging and has recently achieved resolutions down to seven nanometres for a small volume. Here we implement burst ptychography, which overcomes experimental instabilities and enables much higher performance, with 4-nanometre resolution at a 170-times faster acquisition rate, namely, 14,000 resolution elements per second. Another key innovation is tomographic back-propagation reconstruction, allowing us to image samples up to ten times larger than the conventional depth of field. By combining the two innovations, we successfully imaged a state-of-the-art (seven-nanometre node) commercial integrated circuit, featuring nanostructures made of low- and high-density materials such as silicon and metals, which offer good radiation stability and contrast at the selected X-ray wavelength. These capabilities enabled a detailed study of the chip’s design and manufacturing, down to the level of individual transistors. We anticipate that the combination of nanometre resolution and higher X-ray flux at next-generation X-ray sources will have a revolutionary impact in fields ranging from electronics to electrochemistry and neuroscience.
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
en_US
dc.subject
Imaging techniques
en_US
dc.subject
Scanning probe microscopy
en_US
dc.subject
X-rays
en_US
dc.title
High-performance 4-nm-resolution X-ray tomography using burst ptychography
en_US
dc.type
Journal Article
dc.date.published
2024-07-31
ethz.journal.title
Nature
ethz.journal.volume
632
en_US
ethz.journal.issue
8023
en_US
ethz.pages.start
81
en_US
ethz.pages.end
88
en_US
ethz.grant
Hidden, entangled and resonating orders/HERO
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.grant.agreementno
810451
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2024-08-09T06:36:00Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-08-13T07:58:28Z
ethz.rosetta.lastUpdated
2024-08-13T07:58:28Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=High-performance%204-nm-resolution%20X-ray%20tomography%20using%20burst%20ptychography&rft.jtitle=Nature&rft.date=2024-08-01&rft.volume=632&rft.issue=8023&rft.spage=81&rft.epage=88&rft.issn=0028-0836&1476-4687&rft.au=Aidukas,%20Tomas&Phillips,%20Nicholas%20W.&Diaz,%20Ana&Poghosyan,%20Emiliya&M%C3%BCller,%20Elisabeth&rft.genre=article&rft_id=info:doi/10.1038/s41586-024-07615-6&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record