Zur Kurzanzeige

dc.contributor.author
Adolphs, Leonard
dc.contributor.author
Gao, Tianyu
dc.contributor.author
Xu, Jing
dc.contributor.author
Shuster, Kurt
dc.contributor.author
Sukhbaatar, Sainbayar
dc.contributor.author
Weston, Jason
dc.contributor.editor
Rogers, Anna
dc.contributor.editor
Boyd-Graber, Jordan
dc.contributor.editor
Okazaki, Naoaki
dc.date.accessioned
2024-05-03T08:07:32Z
dc.date.available
2024-04-22T06:30:52Z
dc.date.available
2024-05-03T08:07:32Z
dc.date.issued
2023-07
dc.identifier.isbn
978-1-959429-72-2
en_US
dc.identifier.other
10.18653/v1/2023.acl-long.493
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/669683
dc.identifier.doi
10.3929/ethz-b-000669683
dc.description.abstract
Standard language model training employs gold human documents or human-human interaction data, and treats all training data as positive examples. Growing evidence shows that even with very large amounts of positive training data, issues remain that can be alleviated with relatively small amounts of negative data - examples of what the model should not do. In this work, we propose a novel procedure to train with such data called the "CRINGE" loss (ContRastive Iterative Negative GEneration). We show the effectiveness of this approach across three different experiments on the tasks of safe generation, contradiction avoidance, and open-domain dialogue. Our models outperform multiple strong baselines and are conceptually simple, easy to train and implement.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Association for Computational Linguistics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
The CRINGE Loss: Learning what language not to model
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.book.title
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
en_US
ethz.pages.start
8854
en_US
ethz.pages.end
8874
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
61st Annual Meeting of the the Association for Computational Linguistics (ACL 2023)
en_US
ethz.event.location
Toronto, Canada
en_US
ethz.event.date
July 9-14, 2023
en_US
ethz.identifier.wos
ethz.publication.place
Stroudsburg, PA
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2024-04-22T06:30:57Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-05-03T08:07:33Z
ethz.rosetta.lastUpdated
2024-05-03T08:07:33Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=The%20CRINGE%20Loss:%20Learning%20what%20language%20not%20to%20model&rft.date=2023-07&rft.spage=8854&rft.epage=8874&rft.au=Adolphs,%20Leonard&Gao,%20Tianyu&Xu,%20Jing&Shuster,%20Kurt&Sukhbaatar,%20Sainbayar&rft.isbn=978-1-959429-72-2&rft.genre=proceeding&rft_id=info:doi/10.18653/v1/2023.acl-long.493&rft.btitle=Proceedings%20of%20the%2061st%20Annual%20Meeting%20of%20the%20Association%20for%20Computational%20Linguistics%20(Volume%201:%20Long%20Papers)
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige