Deep Learning-Based Cellular Activity Recognition in Live-Cell Imaging
dc.contributor.author
Pulfer, Alain
dc.contributor.supervisor
Razansky, Daniel
dc.contributor.supervisor
Gonzalez, Santiago F.
dc.contributor.supervisor
Thiran, Jean-Philippe
dc.contributor.supervisor
Pizzagalli, Diego Ulisse
dc.date.accessioned
2024-03-13T07:46:48Z
dc.date.available
2024-03-12T10:36:24Z
dc.date.available
2024-03-13T07:46:48Z
dc.date.issued
2023
dc.identifier.uri
http://hdl.handle.net/20.500.11850/664081
dc.identifier.doi
10.3929/ethz-b-000664081
dc.description.abstract
Over the past two decades, two-photon intra-vital microscopy (2P-IVM) has emerged as the gold standard technology for the real-time investigations of interactions between host immune defenses and pathogens. However, despite its significance, analytical tools dedicated to this platform remain scarce, with quantitative measurements primarily relying on cell trajectory analysis. The aim of this doctoral thesis is to address this gap by providing a comprehensive analysis of data generated in vivo. The main objective of this work is the development of novel cell activity recognition (CAR) tools to distinguish and quantify cellular behaviors related to the immune system and cell death. To achieve this goal, I explored the application of deep learning architectures designed for natural language processing and computer vision tasks. Simultaneously, I curated and made public datasets for the application of supervised learning techniques. Finally, I provided a biological validation confirming the usability of the generated CAR tools in the context of the immune system. In conclusion, this doctoral thesis presents a pioneering approach to measuring cellular behavior. In the future, the development of CAR tools will enable the prediction and characterization of complex cellular activities, contributing to the advancement of fundamental research and therapeutic strategies.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Microscopy
en_US
dc.subject
Deep Learning
en_US
dc.subject
Apoptosis
en_US
dc.title
Deep Learning-Based Cellular Activity Recognition in Live-Cell Imaging
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2024-03-13
ethz.size
245 p.
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.identifier.diss
29839
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02631 - Institut für Biomedizinische Technik / Institute for Biomedical Engineering::09648 - Razansky, Daniel / Razansky, Daniel
en_US
ethz.date.deposited
2024-03-12T10:36:24Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-03-13T07:46:49Z
ethz.rosetta.lastUpdated
2024-03-13T07:46:49Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Deep%20Learning-Based%20Cellular%20Activity%20Recognition%20in%20Live-Cell%20Imaging&rft.date=2023&rft.au=Pulfer,%20Alain&rft.genre=unknown&rft.btitle=Deep%20Learning-Based%20Cellular%20Activity%20Recognition%20in%20Live-Cell%20Imaging
Files in this item
Publication type
-
Doctoral Thesis [30232]