Aerial Image-based Inter-day Registration for Precision Agriculture
dc.contributor.author
Gao, Chen
dc.contributor.author
Daxinger, Franz
dc.contributor.author
Roth, Lukas
dc.contributor.author
Maffra, Fabiola
dc.contributor.author
Beardsley, Paul
dc.contributor.author
Chli, Margarita
dc.contributor.author
Teixeira, Lucas
dc.date.accessioned
2024-08-14T09:04:30Z
dc.date.available
2024-02-29T16:36:28Z
dc.date.available
2024-03-01T06:55:39Z
dc.date.available
2024-08-14T09:04:30Z
dc.date.issued
2024
dc.identifier.isbn
979-8-3503-8457-4
en_US
dc.identifier.other
10.1109/ICRA57147.2024.10611221
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/662288
dc.identifier.doi
10.3929/ethz-b-000662288
dc.description.abstract
Satellite imagery has traditionally been used to collect crop statistics, but its low resolution and registration accuracy limit agricultural analytics to plant stand levels and large areas. Precision agriculture seeks analytic tools at near single plant level, and this work explores how to improve aerial photogrammetry to enable inter-day precision agriculture
analytics for intervals of up to a month.
Our work starts by presenting an accurately registered image time series, captured up to twice a week, by an unmanned aerial vehicle over a wheat crop field. The dataset is registered using photogrammetry aided by fiducial ground control points (GCPs). Unfortunately, GCPs severely disrupt crop management activities. To address this, we propose a novel inter-day registration approach that only relies once on GCPs, at the beginning of the season.
The method utilises LoFTR, a state-of-the-art image matching transformer. The original LoFTR network was trained using imagery of outdoor man-made scenes. One of the contributions is to extend LoFTR training method from matching images of a static scene to a dynamic scene of plants undergoing growth. Another contribution is the overall evaluation of our registration method that combines intra-day reconstruction and results from previous days in a seven degree-of-freedom alignment. The results show the benefits of our approach against other matching algorithms and the importance of retraining using crop scenes,
particularly using our custom training method for growing crops that achieve an average of 27 cm error across the season.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Aerial systems: Perception and autonomy
en_US
dc.subject
Robotics and automation in agriculture and forestry
en_US
dc.subject
Agricultural automation
en_US
dc.title
Aerial Image-based Inter-day Registration for Precision Agriculture
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2024-08-08
ethz.book.title
2024 IEEE International Conference on Robotics and Automation (ICRA)
en_US
ethz.pages.start
11862
en_US
ethz.pages.end
11868
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
41st IEEE International Conference on Robotics and Automation (ICRA 2024)
en_US
ethz.event.location
Yokohama, Japan
en_US
ethz.event.date
May 13-17, 2024
en_US
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09559 - Chli, Margarita (ehemalig) / Chli, Margarita (former)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03894 - Walter, Achim / Walter, Achim
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03894 - Walter, Achim / Walter, Achim
ethz.relation.isSupplementedBy
10.3929/ethz-b-000672331
ethz.date.deposited
2024-02-29T16:36:28Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-08-14T09:05:00Z
ethz.rosetta.lastUpdated
2024-08-14T09:05:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Aerial%20Image-based%20Inter-day%20Registration%20for%20Precision%20Agriculture&rft.date=2024&rft.spage=11862&rft.epage=11868&rft.au=Gao,%20Chen&Daxinger,%20Franz&Roth,%20Lukas&Maffra,%20Fabiola&Beardsley,%20Paul&rft.isbn=979-8-3503-8457-4&rft.genre=proceeding&rft_id=info:doi/10.1109/ICRA57147.2024.10611221&rft.btitle=2024%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
Dateien zu diesem Eintrag
Publikationstyp
-
Conference Paper [35450]