Open access
Autor(in)
Datum
2024Typ
- Journal Article
ETH Bibliographie
yes
Altmetrics
Abstract
We investigate three aspects of weak* convergence of the n-step distributions of random walks on finite volume homogeneous spaces G//Gamma of semisimple real Lie groups. First, we look into the obvious obstruction to the upgrade from Cesaro to non-averaged convergence: periodicity. We give examples where it occurs and conditions under which it does not. In a second part, we prove convergence towards Haar measure with exponential speed from almost every starting point. Finally, we establish a strong uniformity property for the Cesaro convergence towards Haar measure for uniquely ergodic random walks. Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-b-000649502Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
Dynamical SystemsBand
Seiten / Artikelnummer
Verlag
Taylor & FrancisThema
Random walk; homogeneous space; aperiodic; spectral gap; recurrenceOrganisationseinheit
03826 - Einsiedler, Manfred L. / Einsiedler, Manfred L.
Zugehörige Publikationen und Daten
Is new version of: http://hdl.handle.net/20.500.11850/391755
ETH Bibliographie
yes
Altmetrics