Zur Kurzanzeige

dc.contributor.author
Zhang, Mingchao
dc.contributor.author
Lee, Yohan
dc.contributor.author
Zheng, Zhiqiang
dc.contributor.author
Khan, Muhammad Turab Ali
dc.contributor.author
Lyu, Xianglong
dc.contributor.author
Byun, Junghwan
dc.contributor.author
Giessen, Harald
dc.contributor.author
Sitti, Metin
dc.date.accessioned
2023-12-18T11:57:35Z
dc.date.available
2023-12-18T08:29:55Z
dc.date.available
2023-12-18T11:57:35Z
dc.date.issued
2023-12-11
dc.identifier.issn
2041-1723
dc.identifier.other
10.1038/s41467-023-43921-9
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/648113
dc.identifier.doi
10.3929/ethz-b-000648113
dc.description.abstract
Creating micro/nanostructures containing multi-channel information within responsive hydrogels presents exciting opportunities for dynamically changing functionalities. However, fabricating these structures is immensely challenging due to the soft and dynamic nature of hydrogels, often resulting in unintended structural deformations or destruction. Here, we demonstrate that dehydrated hydrogels, treated by a programmable femtosecond laser, can allow for a robust fabrication of micro/nanostructures. The dehydration enhances the rigidity of the hydrogels and temporarily locks the dynamic behaviours, significantly promoting their structural integrity during the fabrication process. By utilizing versatile dosage domains of the femtosecond laser, we create micro-grooves on the hydrogel surface through the use of a high-dosage mode, while also altering the fluorescent intensity within the rest of the non-ablated areas via a low-dosage laser. In this way, we rationally design a pixel unit containing three-channel information: structural color, polarization state, and fluorescent intensity, and encode three complex image information sets into these channels. Distinct images at the same location were simultaneously printed onto the hydrogel, which can be observed individually under different imaging modes without cross-talk. Notably, the recovered dynamic responsiveness of the hydrogel enables a multi-information-encoded surface that can sequentially display different information as the temperature changes.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Micro- and nanofabrication of dynamic hydrogels with multichannel information
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Nature Communications
ethz.journal.volume
14
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Nat Commun
ethz.pages.start
8208
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2023-12-18T08:29:57Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-12-18T11:57:36Z
ethz.rosetta.lastUpdated
2024-02-03T08:05:38Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Micro-%20and%20nanofabrication%20of%20dynamic%20hydrogels%20with%20multichannel%20information&rft.jtitle=Nature%20Communications&rft.date=2023-12-11&rft.volume=14&rft.issue=1&rft.spage=8208&rft.issn=2041-1723&rft.au=Zhang,%20Mingchao&Lee,%20Yohan&Zheng,%20Zhiqiang&Khan,%20Muhammad%20Turab%20Ali&Lyu,%20Xianglong&rft.genre=article&rft_id=info:doi/10.1038/s41467-023-43921-9&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige