Zur Kurzanzeige

dc.contributor.author
Zhang, Zhejun
dc.contributor.author
Liniger, Alexander
dc.contributor.author
Sakaridis, Christos
dc.contributor.author
Yu, Fisher
dc.contributor.author
Van Gool, Luc
dc.contributor.editor
Oh, Alice
dc.contributor.editor
Naumann, Tristan
dc.contributor.editor
Globerson, Amir
dc.contributor.editor
Saenko, Kate
dc.contributor.editor
Hardt, Moritz
dc.contributor.editor
Levine, Sergey
dc.date.accessioned
2024-07-15T11:30:01Z
dc.date.available
2023-11-23T11:43:13Z
dc.date.available
2023-11-24T06:56:12Z
dc.date.available
2024-07-15T11:30:01Z
dc.date.issued
2024-07
dc.identifier.isbn
978-1-7138-9992-1
dc.identifier.uri
http://hdl.handle.net/20.500.11850/643424
dc.identifier.doi
10.3929/ethz-b-000643424
dc.description.abstract
The real-world deployment of an autonomous driving system requires its components to run on-board and in real-time, including the motion prediction module that predicts the future trajectories of surrounding traffic participants. Existing agent-centric methods have demonstrated outstanding performance on public benchmarks. However, they suffer from high computational overhead and poor scalability as the number of agents to be predicted increases. To address this problem, we introduce the K-nearest neighbor attention with relative pose encoding (KNARPE), a novel attention mechanism allowing the pairwise-relative representation to be used by Transformers. Then, based on KNARPE we present the heterogeneous polyline Transformer with relative pose encoding (HPTR), a hierarchical framework enabling asynchronous token update during the online inference. By sharing contexts among agents and reusing the unchanged contexts, our approach is as efficient as scene-centric methods, while performing on par with state-of-the-art agent-centric methods. Experiments on Waymo and Argoverse-2 datasets show that HPTR achieves superior performance among end-to-end methods that do not apply expensive post-processing or ensembling. The code is available at https://github.com/zhejz/HPTR.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Real-Time Motion Prediction via Heterogeneous Polyline Transformer with Relative Pose Encoding
en_US
dc.type
Conference Paper
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.book.title
Advances in Neural Information Processing Systems 36
en_US
ethz.pages.start
57481
en_US
ethz.pages.end
57499
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023)
en_US
ethz.event.location
New Orleans, LA, USA
en_US
ethz.event.date
December 10-16, 2023
en_US
ethz.notes
Conference lecture on December 13, 2023.
en_US
ethz.identifier.wos
ethz.publication.place
Red Hook, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09688 - Yu, Fisher / Yu, Fisher
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09688 - Yu, Fisher / Yu, Fisher
ethz.identifier.orcidWorkCode
147253550
ethz.identifier.url
https://papers.nips.cc/paper_files/paper/2023/hash/b37c2e26b75ee02fcabd65a2a0367136-Abstract-Conference.html
ethz.relation.isSupplementedBy
https://github.com/zhejz/HPTR
ethz.relation.isNewVersionOf
10.48550/ARXIV.2310.12970
ethz.date.deposited
2023-11-23T11:43:13Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-07-15T11:30:06Z
ethz.rosetta.lastUpdated
2024-07-15T11:30:06Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Real-Time%20Motion%20Prediction%20via%20Heterogeneous%20Polyline%20Transformer%20with%20Relative%20Pose%20Encoding&rft.date=2024-07&rft.spage=57481&rft.epage=57499&rft.au=Zhang,%20Zhejun&Liniger,%20Alexander&Sakaridis,%20Christos&Yu,%20Fisher&Van%20Gool,%20Luc&rft.isbn=978-1-7138-9992-1&rft.genre=proceeding&proceeding&rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2036
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige